Skip to main content
Log in

Estimation of an Inertia Tensor and Automatic Balancing of a Microsatellite Mockup on an Air-Bearing Testbed

  • CONTROL SYSTEMS OF MOVING OBJECTS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

This paper considers the problem of determining the position of the center-of-mass and inertia tensor of a microsatellite mockup on an air-bearing testbed by using optical measurements. The position of the mockup’s center of mass can be shifted relative to the suspension’s center by using a system of electrodynamic linear actuators and loads fixed on them. Using the equations of motion of the mockup on an aerodynamic suspension and measurements of its angular position, the inertia tensor and center-of-mass position of the model are estimated. Based on these estimates, the linear actuators move to set the desired center-of-mass position relative to the suspension point. The developed algorithm for automatic balancing of the microsatellite mockup is experimentally investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. D. S. Ivanov, M. D. Koptev, Ya. V. Mashtakov, M. Yu. Ovchinnikov, N. N. Proshunin, S. S. Tkachev, A. I. Fedoseev, and M. O. Shachkov, “Laboratory facility for microsatellite mock-up motion simulation,” J. Comput. Syst. Sci. Int. 57, 115 (2018).

    Article  Google Scholar 

  2. D. Ivanov, M. Koptev, Y. Mashtakov, et al., “Determination of disturbances acting on small satellite mock-up on air bearing table,” Acta Astronaut. 142, 265–276 (2018).

    Article  Google Scholar 

  3. D. Bindel’, I. E. Zaramenskikh, D. S. Ivanov, M. Yu. Ovchinnikov, and N. G. Proncheva, “A laboratory facility for verification of control algorithms for a group of satellites,” J. Comput. Syst. Sci. Int. 48, 779 (2009).

    Article  Google Scholar 

  4. M. Ovchinnikov, D. Ivanov, N. Ivlev, et al., “Development, integrated investigation, laboratory and in-flight testing of Chibis-M microsatellite ADCS,” Acta Astronaut. 93, 23–33 (2014).

    Article  Google Scholar 

  5. D. S. Ivanov, S. O. Karpenko, M. Yu. Ovchinnikov, D. S. Roldugin, and S. S. Tkachev, “Testing of attitude control algorithms for microsatellite Chibis-M at laboratory facility,” J. Comput. Syst. Sci. Int. 51, 106 (2012).

    Article  Google Scholar 

  6. W. Haeussermann and H. Kennel, “A satellite motion simulator,” Automatica 5 (12), 22–25, 90–91 (1960).

    Google Scholar 

  7. M. Peck, L. Miller, A. Cavender, et al., “An airbearing-based testbed for momentum control systems and spacecraft line of sight,” Adv. Astronaut. Sci. 114, AAS 03–127 (2003).

  8. D. Ivanov, M. Koptev, M. Ovchinnikov, et al., “Flexible microsatellite mock-up docking with non-cooperative target on planar air bearing test bed,” Acta Astronaut. 153, 357–366 (2018).

    Article  Google Scholar 

  9. S. S. F. Cordova and D. B. DeBra, “Mass center estimation of a drag-free satellite,” in Proceedings of the 6th Triennial World Congress of the IFAC, Boston, 1975.

  10. J. Prado, G. Bisiacchi, L. Reyes, et al., “Three-axis air-bearing based platform for small satellite attitude determination and control simulation,” J. Appl. Res. Technol. 3, 222–237 (2005).

    Article  Google Scholar 

  11. M. A. Post, J. Li, and R. Lee, “Design and construction of a magnetic field simulator for CubeSat attitude control testing,” J. Instrum. Autom. Syst. 1 (1), 1–9 (2014).

    Google Scholar 

  12. M. Pastena, L. Sorrentino, and M. Grassi, “Design and validation of the university of Naples space magnetic field simulator (SMAFIS),” J. Inst. Environ. Sci. Technol. 44, 33–42 (2001).

    Google Scholar 

  13. M. Prinkey, D. Miller, P. Bauer, et al., “CubeSat attitude control testbed design: Merritt 4–Coil per axis Helmholtz cage and spherical air bearing,” in Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Reston, Virginia, 2013.

  14. R. Silva, I. Ishioka, C. Cappelletti, et al., “Helmholtz cage design and validation for nanosatellites HWIL testing,” IEEE Trans. Aerospace Electron. Syst. 55, 3050–3061 (2019).

    Article  Google Scholar 

  15. M. Romano and B. N. Agrawal, “Acquisition, tracking and pointing control of the bifocal relay mirror spacecraft,” Acta Astronaut. 53, 509–519 (2003).

    Article  Google Scholar 

  16. J. J. Kim and B. N. Agrawal, “Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator,” J. Guidance, Control, Dyn. 32, 1005–1017 (2009).

    Article  Google Scholar 

  17. S. Wang, J. Ma, and S. Gao, “Balancing methods on the three-axis air-bearing platform,” in Proceedings of the Asia Simulation Conference, Shaghai (Springer, 2012), pp. 117–125.

  18. S. Chesi, Q. Gong, V. Pellegrini, et al., “Automatic mass balancing of a spacecraft three-axis simulator: analysis and experimentation,” J. Guidance, Control, Dyn. 37, 197–206 (2014).

    Article  Google Scholar 

  19. Z. Xu, N. Qi, and Y. Chen, “Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and extended Kalman filter,” Acta Astronaut. 117, 254–262 (2015).

    Article  Google Scholar 

  20. A. Krishnanunni, S. Jayadevan, A. Mony, et al., “Inertia and center of mass estimation of a 3 DoF air bearing platform,” IFAC-PapersOnLine 51, 219–224 (2018).

    Article  Google Scholar 

  21. Z. Xu, Y. Chen, and Z. Xu, “A suboptimal excitation torque for parameter estimation of a 5–DOF spacecraft simulator,” Adv. Space Res. 62, 2556–2565 (2018).

    Article  Google Scholar 

  22. SPUTNIKS–Test Benches. https://sputnix.ru/ru/oborudovanie/ispytatelnye-stendy/. Accessed February12, 2020.

  23. V. N. Branets, Lectures on the Theory of Strapdown Inertial Navigation Control Systems (MFTI, Moscow, 2009) [in Russian].

    Google Scholar 

  24. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME, Ser. D: J. Basic Eng. 82, 35–45 (1960).

    Google Scholar 

  25. M. Ovchinnikov and D. Ivanov, “Approach to study satellite attitude determination algorithms,” Acta Astronaut. 98, 133–137 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ivanov.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D.S., Ivanova, T.A., Ivlev, N.A. et al. Estimation of an Inertia Tensor and Automatic Balancing of a Microsatellite Mockup on an Air-Bearing Testbed. J. Comput. Syst. Sci. Int. 60, 315–332 (2021). https://doi.org/10.1134/S1064230721020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230721020088

Navigation