Skip to main content
Log in

Extended gravitoelectromagnetism. II. Metric perturbation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article makes the connection between the new gravitoelectromagnetic theory presented in the part I paper and general gravity in its weak formulation. The perturbation in the metric tensor is obtained in terms of the flat-space total energy–momentum tensor given by the sum of the consistent fully relativistic fluid and gravitoelectromagnetic field contributions. Expressions for the perturbed metric in the internal (fluid) and external (vacuum) regions are given in terms of the fluid and field variables. This formulation of gravitoelectromagnetism is compatible with the formation of gravitational waves. The geodesic equation is obtained in both the internal and external regions, including new terms neglected in the standard gravitomagnetic formulation. It is shown that the new terms reproduce the anomalous shift of planetary precession, which results from a balance between the gravitoelectric and gravitomagnetic forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.O. Ludwig, Extended gravitoelectromagnetism. I. Variational formulation. Eur. Phys. J. Plus 136, 1–38 (2021)

    Article  Google Scholar 

  2. H. Thirring, Über die formale Analogie zwischen den elektromagnetischen Grundgleichugen und den Einsteischen Gravitationsgleichungen erster Näherung. Phys. Zeit. 19, 204–205 (1918)

    MATH  Google Scholar 

  3. H. Pfister, Editorial note to: Hans Thirring, on the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation. Gen. Relat. Gravit. 44, 3217–3224 (2012)

    Article  ADS  Google Scholar 

  4. B. Mashoon. Gravitoelectromagnetism: a brief review. arXiv:gr-qc/031103v2 (2008)

  5. L. Comisso, F.A. Asenjo, Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas. Phys. Rev. Lett. 113(5), 045001 (2014)

    Article  ADS  Google Scholar 

  6. G.O. Ludwig, Variational formulation of plasma dynamics. Phys. Plasmas 27(2), 022110 (2020)

    Article  ADS  Google Scholar 

  7. G.O. Ludwig, Galactic rotation curve and dark matter according to gravitomagnetism. Eur. Phys. J. C 81, 1–25 (2021)

    Article  Google Scholar 

  8. O. Heaviside. A gravitational and electromagnetic analogy, in: Electromagnetic Theory Vol. I (The Electrician, London, 1893), pp. 455–466

  9. R.C. Hilborn, Gravitational waves from orbiting binaries without general relativity. Am. J. Phys. 86, 186–197 (2018)

    Article  ADS  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Oxford, fourth revised english edition, Butterworth-Heinemann - Reed Elsevier, 1996)

  11. M. Maggiore, Gravitational Waves—Volume 1: Theory and Experiments (Oxford University Press, Oxford, 2008)

  12. T.A. Moore, A General Relativity Workbook (University Science Books, Mill Valley, CA, 2013)

    Google Scholar 

  13. E. Poisson, C.W. Will, Gravity: Newtonian, Post- Newtonian, Relativistic (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  14. A. Einstein, Die Grundlage der allgemeine Relativitätstheorie. Ann. Phys. 354, 769–822 (1916)

    Article  Google Scholar 

  15. W. Pauli, Theory of Relativity (Pergamon Press, London, 1958)

    MATH  Google Scholar 

  16. H.C. Ohanian, R. Ruffini, Gravitation and Spacetime, 3rd edn. (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  17. H. Thirring, Über die Wirkung Rotierender Ferner Massen in der Einsteinschen Gravitationstheorie. Phys. Zeit. 19, 33–39 (1918)

    MATH  Google Scholar 

  18. J. Lense, H. Thirring, Über den Einflu\(\beta \) der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monden nach der Einsteinschen Gravitationstheorie. Phys. Zeit. 19, 156–163 (1918)

    MATH  Google Scholar 

  19. H. Pfister, On the history of the so called Lense–Thirring effect. Gen. Relat. Gravit. 39, 1735–1748 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Iorio, H.I.M. Lichtenegger, M.L. Ruggiero, C. Corda, Phenomenology of the Lense–Thirring effect in the solar system. Astrophys. Space Sci. 331, 351–395 (2011)

    Article  ADS  Google Scholar 

  21. C.W.F. Everitt et al., Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106(5), 221101 (2011)

    Article  ADS  Google Scholar 

  22. H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, Boston, MA, 2001)

    MATH  Google Scholar 

  23. G.H. Goedecke, Classically radiationless motions and possible implications for quantum theory. Phys. Rev. 135, B281–B288 (1964)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges useful discussions with Rubens de Melo Marinho Jr. and Manuel Máximo Bastos Malheiro de Oliveira. This work was supported by a grant provided by the Programa de Capacitação Institucional: Diretoria de Pesquisa e Desenvolvimento/Comissão Nacional de Energia Nuclear (CNEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. O. Ludwig.

Appendix A: Nomenclature

Appendix A: Nomenclature

Constants and standard notation

\(c=299,792,458\) m s\(^{-1}\) velocity of light

\(G=6.67408\times 10^{-11}\) m\(^{3}\) kg\(^{-1}\) s\(^{-2}\) gravitational constant

\(k_{B}=1.38064852\times 10^{-23}\) m\(^{2}\) kg s\(^{-2}\) K\(^{-1}\) Boltzmann constant

\(\left( \mu ,\nu ,\rho \ldots \right) \) Greek letters for spacetime indices assume the values 0, 1, 2, 3

\(\left( i,j,k\ldots \right) \) Latin letters for space indices assume the values 1, 2, 3

\(\left( -+++\right) \) metric signature; \(\eta ^{\mu \nu }\) Minkowski tensor

\(\overline{\overline{{\varvec{I}}}}\) unit dyadic; \(\overline{\overline{\overline{\epsilon }}}\) Levi–Civita tensor in three dimensions; \(\delta _{ij}\) Kronecker delta

GE, GM, GEM meaning gravitoelectric, gravitomagnetic and gravitoelectromagnetic, respectively

Section 2

t time variable; \({\varvec{r}}\) position variable in three dimensions; m particle mass

\({\varvec{u}}\) fluid velocity; \(\beta =u/c\) normalized fluid velocity; \(\gamma =1/\sqrt{1-\beta ^{2}}\) Lorentz factor

p pressure; \(\rho \) mass density; n number density; T absolute temperature; \(\gamma _{A}\) “adiabatic” coefficient

\({\varvec{E}}_{g}\) GE field; \({\varvec{B}}_{g}\) GM field; \({\varvec{j}}\) mass current density

\(\phi _{g}\) GE (Newtonian) scalar potential; \({\varvec{A}}_{g}\) GM vector potential

\(j^{\mu }\) contravariant mass four-current density; \(u^{\mu }\) contravariant fluid four-velocity

\(F_{g}^{\mu \nu }\) GEM field tensor; \(A_{g}^{\mu }\) four-vector GEM potential

\(\overset{\circ }{U}\) proper energy density; \(\overset{\circ }{n}\) rest frame number density; \(\overset{\circ }{T}\) rest frame temperature; s specific entropy

\(U_{f}\) fluid energy density; \({\varvec{G}}_{f}\) fluid momentum density; \(\overline{\overline{{\varvec{T}}}}_{f}\) fluid stress density

\(U_{g}\) GEM energy density; \({\varvec{G}}_{g}\) GEM momentum density; \(\overline{\overline{{\varvec{T}}}}_{g}\) GEM stress density; \({\varvec{S}} _{g}\) GEM Poynting vector

\(T_{f}^{\mu \nu }\) fluid energy–momentum; \(T_{g}^{\mu \nu }\) GEM field energy–momentum; \(T^{\mu \nu }\) total energy–momentum

Section 3

\(x^{\mu }\), \(\xi ^{\mu }\) contravariant four-vector coordinates; \(g_{\mu \nu }\) metric tensor;

\(h_{\mu \nu }\) metric tensor perturbations; \({\widetilde{h}}_{\mu \nu }\) trace-reversed metric perturbations; h trace of \(h_{\mu \nu }\); \(\widetilde{h}\) trace of \({\widetilde{h}}_{\mu \nu }\)

\(\phi _{\text {eff}}\), \({\varvec{A}}_{\text {eff}}\), \(\overline{\overline{\psi }}_{\text {eff}}\) effective GEM scalar potential, vector potential and stress dyadic in the fluid region

\({\varvec{E}}_{\text {eff}}\), \({\varvec{B}}_{\text {eff}}\) effective GE and GM fields

\(\overline{\overline{\psi }}_{g}\) GEM stress dyadic formed by juxtaposition of vectors \({\varvec{a}}\) and \({\varvec{e}}\) in the vacuum region

Section 4

ds space–time element; \(\tau \) proper time element; S action

\(\Gamma _{\mu \nu }^{\rho }\) Christoffel symbol; \({\varvec{v}}\) particle velocity

\(\left( r,\theta ,\varphi \right) \) spherical coordinates

Section 5

M, m central and orbiting masses, respectively

\({\varvec{r}}_{m}\), \({\varvec{v}}_{m}\), \(\rho _{m}\), \({\varvec{j}}_{m}\) position vector, velocity, mass density and current density associated with mass m

\({\varvec{r}}_{M}\), \({\varvec{v}}_{M}\), \(\rho _{M}\), \({\varvec{j}}_{M}\) position vector, velocity, mass density and current density associated with mass M

\(\phi _{g,m}\), \({\varvec{A}}_{g,m}\), \({\varvec{E}}_{g,m}\), \({\varvec{B}} _{g,m}\) GEM potentials and fields produced by mass m

\(\phi _{g,M}\), \({\varvec{A}}_{g,M}\), \({\varvec{E}}_{g,M}\), \({\varvec{B}} _{g,M}\) GEM potentials and fields produced by mass M

\({\varvec{L}}_{m}\), \({\varvec{L}}_{M}\) angular momentum of masses m and M

\(\gamma _{m}\), \(\omega _{T}\), \(f_{T}\) Lorentz factor, Thomas precession and kinematic Thomas factor associated with mass m

\(\phi _{g}\), \({\varvec{A}}_{g}\), \({\varvec{E}}_{g}\), \({\varvec{B}}_{g}\) simplified notation for the potentials and fields produced by mass M in the position of m

\({\varvec{r}}\), \({\varvec{v}}\), \({\varvec{L}}\) simplified notation for the position, velocity and angular momentum of m

\(\beta \), \(\gamma \) simplified notation for the normalized velocity and Lorentz factor of m

\(\ell \), \(\omega _{0}\), a specific angular momentum, angular frequency and radial distance variables

\(\tau \), \(\xi \), normalized time and radial distance variables

\(\epsilon \), \(\alpha \) dimensionless relativistic correction factor and auxiliary variable

\(v_{0}\), \(T_{0}\) velocity and period of the Kepler circular orbit

F, f, \(\eta \), \(\omega \), \(\psi \) auxiliary variables used in the integration of the equation of motion

\(\Delta \varphi \), \(\sigma \) precession shift of the perihelion for a half revolution and total precession per orbit

\({\varvec{P}}\), \({\varvec{J}}\) canonical momentum and canonical angular momentum of mass m

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, G.O. Extended gravitoelectromagnetism. II. Metric perturbation. Eur. Phys. J. Plus 136, 465 (2021). https://doi.org/10.1140/epjp/s13360-021-01452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01452-6

Navigation