Skip to main content
Log in

Confinement effects on C–H and C–F stretching vibrational frequencies of difluoromethane in cold inert gas matrixes: a combined infrared spectroscopy and electronic structure theory study

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Mid-infrared spectra of difluoromethane (DFM) have been recorded by confining the molecule in the matrix cages of pure argon, nitrogen and in the mixed matrixes of argon and nitrogen obtained by mixing the two gases in definite proportions. The measured spectra depict distinct confinement effects in terms of the infrared spectral shifts of the C–H and C–F stretching vibrational fundamentals as compared to the free molecules in the gas-phase, and also some remarkable changes in band appearances and relative intensities. The signs of the spectral shifts are observed to be different for the \(\upnu _{\text {C--H}}\) and \(\upnu _{\text {C--F}}\) transitions. Pronounced blue shifts are observed for the two \(\upnu _{\text {C--H}}\) modes in pure nitrogen matrix, which progressively reduce in magnitude in the mixed matrixes, and is least in the pure argon matrix. On the other hand, distinct red shifts of the \(\upnu _{\text {C--F}}\) vibrations are evident in pure nitrogen matrix, which are reduced in magnitude in the mixed matrixes, and become even less pronounced in pure argon matrix. The effect of Fermi resonances in the \(\upnu _{\text {C--H}}\) region, that has motivated several previous investigations of DFM including high resolution gas phase studies, becomes explicit upon comparison of the matrix isolation spectrum with the gas phase spectrum. Electronic structure calculations using several DFT and DFT-D methods, in conjunction with NBO analysis, have been carried out for various sizes of \(\hbox {DFM-N}_{2}\) and DFM-Ar complexes in order to understand the underlying interactions responsible for the observed shifts. The calculations are found to satisfactorily reproduce the observed variations in magnitude and direction of the shifts of both the \(\upnu _{\text {C--H}}\) and \(\upnu _{\text {C--F}}\) transitions for the change of the medium. It is inferred that the inert gas matrix environment exerts an electronic re-organization within the DFM molecule, and the consequent rehybridization of the carbon-centric hybrid orbital of the C–H and C–F bonds is responsible for the observed spectral shifts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data on which the conclusions of this work rely are presented in the main manuscript, and hence need not be separately deposited in any data repository.]

References

  1. E.D. Becker, G.C. Pimentel, Spectroscopic studies of reactive molecules by the matrix isolation method. J. Chem. Phys. 25, 224 (1956)

    Article  ADS  Google Scholar 

  2. G.M. Munoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg, Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416, 403 (2002)

    Article  ADS  Google Scholar 

  3. G.C. Pimentel, M.O. Bulanin, M.V. Thiel, Infrared spectra of ammonia suspended in solid nitrogen. J. Chem. Phys. 36, 500 (1962)

    Article  ADS  Google Scholar 

  4. M. Mukherjee, B. Bandyopadhyay, P. Biswas, T. Chakraborty, Amine inversion effects on the IR spectra of aniline in the gas phase and cold inert gas matrixes. Indian J. Phys. 86, 201 (2012)

    Article  ADS  Google Scholar 

  5. T.N. Wassermann, D. Luckhaus, S. Coussan, M.A. Suhm, Proton tunneling estimates for malonaldehyde vibrations from supersonic jet and matrix quenching experiments. Phys. Chem. Chem. Phys. 8, 2344 (2006)

    Article  Google Scholar 

  6. S. Lopes, A.V. Domanskaya, R. Fausto, M. Räsänen, L. Khriachtchev, Formic and acetic acids in a nitrogen matrix: enhanced stability of the higher-energy conformer. J. Chem. Phys. 133, 144507 (2010)

    Article  ADS  Google Scholar 

  7. I. Bhattacharya, J. Sadhukhan, S. Biswas, T. Chakraborty, Medium-dependent crossover from the red to blue shift of the Donor’s stretching fundamental in the binary hydrogen-bonded complexes of CDCl3 with ethers and ketones. J. Phys. Chem. A 124, 7259 (2020)

    Article  Google Scholar 

  8. M. Hippler, Quantum chemical study and infrared spectroscopy of hydrogen-bonded CHCl\(_3\)–NH\(_3\) in the gas phase. J. Chem. Phys. 127, 0834306 (2007)

    Article  Google Scholar 

  9. S.L. Paulson, A.J. Barnes, Trihalogenomethane base complexes studied by vibrational spectroscopy in low temperature matrices. J. Mol. Struct. 80, 151 (1982)

    Article  ADS  Google Scholar 

  10. I. Suzuki, T. Shimanouch, Vibration-rotation spectra and molecular force field of methylene fluoride and methylene fluoride-d2. J. Mol. Struct. 46, 130 (1973)

    ADS  Google Scholar 

  11. S. Kondo, T. Nakanaga, S. Saëki, Infrared intensities and coriolis interactions in methylene fluoride. J. Chem. Phys. 73, 5409 (1980)

    Article  ADS  Google Scholar 

  12. R.D. Amos, N.C. Handy, W.H. Green, D. Jayatilaka, A. Willetts, P. Palmieri, Anharmonic vibrational properties of CH2F2: a comparison of theory and experiment. J. Chern. Phys. 95, 8323 (1991)

    Article  ADS  Google Scholar 

  13. M.N. Deo, R. Dcunha, V.A. Job, The a2” Forbidden” band in CH2F2: \(\nu \)5–\(\nu \)7 coriolis interaction. J. Mol. Spectrosc. 161, 403 (1993)

    Article  ADS  Google Scholar 

  14. T.J. Cronin, X. Wang, G.A. Bethardy, D.S. Perry, High-resolution infrared spectra in the C–H region of CH2F2: the \(\nu \)6 and 2\(\nu \)2 bands. J. Mol. Spectrosc. 194, 236 (1999)

    Article  ADS  Google Scholar 

  15. K.M. Smith, G. Duxbury, D.A. Newnham, J. Ballard, A high-resolution analysis of the n3 and n9 absorption bands of difluoromethane. J. Mol. Spectrosc. 193, 166 (1999)

    Article  ADS  Google Scholar 

  16. M.N. Deoa, K. Kawaguchib, R. D’Cunhaa, High-resolution FTIR study of the \(\nu \)2 band of CH2F2 and coriolis interaction between the \(\nu \)2 and \(\nu \)8 states. J. Mol. Struct. 517, 187 (2000)

    Article  ADS  Google Scholar 

  17. H. Jiang, D. Appadoo, E. Robertson, D. McNaughton, A comparison of predicted and experimental vibrational spectra in some small fluorocarbons. J Comput. Chem. 23, 1220 (2002)

    Article  Google Scholar 

  18. N. Tasinato, G. Regini, P. Stoppa, A.P. Charmet, A. Gambi, Anharmonic force field and vibrational dynamics of CH\(_2\)F\(_2\) up to 5000 cm\(^-1\) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations. J. Chem. Phys. 136, 214302 (2012)

    Article  ADS  Google Scholar 

  19. P. Stoppa, N. Tasinato, A. Baldacci, A.P. Charmet, S. Giorgianni, F. Tamassia, E. Cané, M. Villa, FTIR spectra of CH\(_2\)F\(_2\) in the 1000–1300 cm\(^-1\) region: rovibrational analysis and modelling of the coriolis and anharmonic resonances in the \(\nu \)3, \(\nu \)5, \(\nu \)7, \(\nu \)9 and 2\(\nu \)4 polyad. J. Quant. Spectrosc. Radiat. Transf. 175, 8 (2016)

    Article  ADS  Google Scholar 

  20. N. Tasinato, G. Ceselin, A.P. Charmet, P. Stoppa, S. Giorgianni, Line-by-line spectroscopic parameters of HFC-32 ro-vibrational transitions within the atmospheric window around \(8.2\mu \text{ m }\). J. Mol. Spec. 348, 57–63 (2018)

    Article  ADS  Google Scholar 

  21. N. Tasinato, A. Turchetto, C. Puzzarini, P. Stoppa, A.P. Charmet, S. Giorgianni, Self-, \(\text{ N}_{2}\)-, \(\text{ O}_{2}\)-broadening coefficients and line parameters of HFC-32 for \(\nu _{7}\) band and ground state transitions from infrared and microwave spectroscopy. Mol. Phys. 112, 2384–2396 (2014)

    Article  ADS  Google Scholar 

  22. N. Tasinato, What are the spectroscopic properties of HFC-32? Answers from DFT. Int. J. Quantum Chem. 114, 1472–1485 (2014)

    Article  Google Scholar 

  23. I.S. Sosulin, D.A. Tyurin, V.I. Feldman, A hydrogen-bonded CH\(_2\)F\(_2\)\(\cdots \)CO complex: ab initio and matrix isolation study, Author links open overlay panel. J. Mol. Struct. 1221, 128784 (2020)

    Article  Google Scholar 

  24. P. Banerjee, T. Chakraborty, Weak hydrogen bonds: insights from vibrational spectroscopic studies. Int. Rev. Phys. Chem 37, 83–123 (2018)

    Article  Google Scholar 

  25. A. Allerhand, P.R. Schleyer, Solvent effects in infrared spectroscopic studies of hydrogen bonding. J. Am. Chem. Soc. 85, 371 (1963)

    Article  Google Scholar 

  26. A.R.H. Cole, L.H. Little, A.J. Michell, Solvent effects in infra-red spectra. O–H and S–H stretching vibrations. Spectrochim. Acta 21, 1169 (1965)

    Article  ADS  Google Scholar 

  27. R. Fraenkel, Y. Hass, Molecular dynamics simulations of rare gas matrix deposition. Chem. Phys. 186, 185 (1994)

    Article  Google Scholar 

  28. X.J. Ning, Q. Qin, A new molecular dynamics method for simulating trapping site structures in cryogenic matrices. J. Chem. Phys. 110, 4920 (1999)

    Article  ADS  Google Scholar 

  29. T. Talik, K.G. Tokhadze, Z. Mielke, Infrared spectra and molecular dynamics simulations of cis-HONO isomer in an argon matrix. J. Mol. Struct. 611, 95 (2002)

    Article  ADS  Google Scholar 

  30. F. Ito, Modelling and spectral simulation of formic acid dimer in Ar matrix using ONIOM calculations. Comput. Theor. Chem. 1161, 18 (2019)

    Article  Google Scholar 

  31. K.V. Jovan Jose, S.R. Gadre, K. Sundararajan, K.S. Viswanathan, Effect of matrix on IR frequencies of acetylene and acetylene-methanol complex: infrared matrix isolation and ab initio study. J. Chem. Phys. 127, 104501 (2007)

    Article  ADS  Google Scholar 

  32. C.A. Rice, N. Borho, M.A. Suhm, Dimerization of pyrazole in slit jet expansions. Z. Phys. Chem. 219, 379–388 (2005)

    Article  Google Scholar 

  33. V. Tabacik, V. Pellegrin, H.H. Günthard, Infrared gas and matrix spectra of all eight symmetrical deutero pyrazole monomers. Spectrochim. Acta Part A 35, 1055 (1979)

    Article  ADS  Google Scholar 

  34. P. Banerjee, T. Chakraborty, Correlation of \(\nu _{{\rm OH}}\) spectral shifts of phenol–benzene O–H\(\cdots \pi \) hydrogen-bonded complexes with Donor’s acidity: a combined matrix isolation, infrared spectroscopy, and quantum chemistry study. J. Phys. Chem. A 118, 7074 (2014)

    Article  Google Scholar 

  35. P. Banerjee, D.P. Mukhopadhyay, T. Chakraborty, On the origin of donor O–H bond weakening in phenol-water complexes. J. Chem. Phys. 143, 204306-1-9 (2015)

    Article  ADS  Google Scholar 

  36. Frisch et al., Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford, 2010)

  37. Y. Zhao, D. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2008)

    Article  Google Scholar 

  38. S. Grimme, Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1, 211 (2011)

    Article  Google Scholar 

  39. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–99 (2006)

    Article  Google Scholar 

  40. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors. Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  41. A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899 (1988)

  42. D.F. Dinu, B. Ziegler, M. Podewitz, K.R. Liedl, T. Loerting, H. Grothe, G. Rauhut, The interplay of VSCF/VCI calculations and matrix-isolation IR spectroscopy—mid infrared spectrum of \(\text{ CH}_{3}\text{ CH}_{2}\text{ F }\) and \(\text{ CD}_{3}\text{ CD}_{2}\text{ F }\). J. Mol. Spec. 367, 111224 (2020)

    Article  Google Scholar 

  43. P. Seidler, J. Kongsted, O. Christiansen, Calculation of vibrational infrared intensities and Raman activities using explicit anharmonic wave functions. J. Phys. Chem. A 111, 11205–11213 (2007)

    Article  Google Scholar 

  44. I.V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, The electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc. 125, 5973–5987 (2003)

    Article  Google Scholar 

  45. I. Lefkowitz, K. Kramer, M.A. Shields, G.L. Pollack, Dielectric and optical properties of crystalline argon. J. Appl. Phys. 38, 4867–4873 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the Department of Science and Technology, Government of India and partial support from the grant of the CSIR in carrying out the research. PB acknowledges Dr. Biman Bandyopadhyay for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Chakraborty.

Additional information

Atoms and Molecules in a Confined Environment—edited by C. N. Ramachandran, Vincenzo Aquilanti, Henry Ed Montgomery, N. Sathyamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Chakraborty, T. Confinement effects on C–H and C–F stretching vibrational frequencies of difluoromethane in cold inert gas matrixes: a combined infrared spectroscopy and electronic structure theory study. Eur. Phys. J. D 75, 131 (2021). https://doi.org/10.1140/epjd/s10053-021-00142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00142-3

Navigation