Skip to main content
Log in

Quantum model for understanding protein misfolding behavior—phase diagram and manual intervention

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The study of protein folding is fundamental and important in the multidisciplinary field because a diversity of diseases, like Alzheimer’s and Parkinson’s are relevant to protein misfolding. The current thermodynamic and geometric approaches only phenomenologically describe but do not provide a mechanistic understanding of the competition between correct folding and misfolding. Here we present a model to understand the misfolding behavior. Considering the influence of dissipative strength for all possible sequences and comparing the folding time toward different compact structures, we obtain a phase diagram of the dissipative quantum phase transition that enables us to model the behavior. We also investigate how a perturbation in the Hamiltonian affects the transition point, which motivates us to explore possible manual interventions. Our results indicate that the manual intervention may be effective for some specific sequence but not for everyone. This approach is expected to lay a foundation for further studies on manual intervention in protein misfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Baldwin, Nature 369, 183 (1994).

    Article  ADS  Google Scholar 

  2. D. Balchin, M. Hayer-Hartl, and F. U. Hartl, Science 353, aac4354 (2016).

    Article  Google Scholar 

  3. C. M. Dobson, Nature 426, 884 (2003).

    Article  ADS  Google Scholar 

  4. P. J. Thomas, B. H. Qu, and P. L. Pedersen, Trends Biochem. Sci. 20, 456 (1995).

    Article  Google Scholar 

  5. C. M. Dobson, Trends Biochem. Sci. 24, 329 (1999).

    Article  Google Scholar 

  6. F. Chiti, P. Webster, N. Taddei, A. Clark, M. Stefani, G. Ramponi, and C. M. Dobson, Proc. Natl. Acad. Sci. USA 96, 3590 (1999).

    Article  ADS  Google Scholar 

  7. J. E. Shea, and C. L. Brooks III, Annu. Rev. Phys. Chem. 52, 499 (2001).

    Article  ADS  Google Scholar 

  8. A. R. Dinner, A. Sali, L. J. Smith, C. M. Dobson, and M. Karplus, Trends Biochem. Sci. 25, 331 (2000).

    Article  Google Scholar 

  9. A. Gershenson, L. M. Gierasch, A. Pastore, and S. E. Radford, Nat. Chem. Biol. 10, 884 (2014).

    Article  Google Scholar 

  10. B. Bukau, and A. L. Horwich, Cell 92, 351 (1998).

    Article  Google Scholar 

  11. C. Soto, FEBS Lett. 498, 204 (2001).

    Article  Google Scholar 

  12. J. L. Silva, D. Foguel, and C. A. Royer, Trends Biochem. Sci. 26, 612 (2001).

    Article  Google Scholar 

  13. A. V. Melkikh, and D. K. F. Meijer, Prog. Biophys. Mol. Biol. 132, 57 (2018).

    Article  Google Scholar 

  14. C. M. Dobson, A. Sali, and M. Karplus, Angew. Chem. Int. Ed. 37, 868 (1998).

    Article  Google Scholar 

  15. R. Riek, S. Hornemann, G. Wider, M. Billeter, R. Glockshuber, and K. Wüthrich, Nature 382, 180 (1996).

    Article  ADS  Google Scholar 

  16. B. Schuler, E. A. Lipman, and W. A. Eaton, Nature 419, 743 (2002).

    Article  ADS  Google Scholar 

  17. J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins 21, 167 (1995).

    Article  Google Scholar 

  18. L. H. Lu, and Y. Q. Li, Chin. Phys. Lett. 36, 080305 (2019), arXiv: 1906.09184.

    Article  ADS  Google Scholar 

  19. Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48, 1687 (1993).

    Article  ADS  Google Scholar 

  20. O. Mülken, and A. Blumen, Phys. Rep. 502, 37 (2011), arXiv: 1101.2572.

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M. Mayor, S. Gerlich, and M. Arndt, Nat. Phys. 15, 1242 (2019).

    Article  Google Scholar 

  22. Y. Q. Li, Y. Y. Ji, J. W. Mao, and X. W. Tang, Phys. Rev. E 72, 021904 (2005), arXiv: q-bio/0408024.

    Article  ADS  Google Scholar 

  23. C. B. Anfinsen, Science 181, 223 (1973).

    Article  ADS  Google Scholar 

  24. H. Li, R. Helling, C. Tang, and N. Wingreen, Science 273, 666 (1996), arXiv: cond-mat/9603016.

    Article  ADS  Google Scholar 

  25. W. W. Mao, L. H. Lv, Y. Y. Ji, and Y. Q. Li, Chin. Phys. B 29, 018702 (2020), arXiv: 1907.07179.

    Article  ADS  Google Scholar 

  26. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  ADS  Google Scholar 

  27. E. W. Montroll, J. Math. Phys. 10, 753 (1969).

    Article  ADS  Google Scholar 

  28. J. D. Noh, and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004), arXiv: cond-mat/0307719.

    Article  ADS  Google Scholar 

  29. S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and J. Klafter, Nature 450, 77 (2007), arXiv: 0711.0682.

    Article  ADS  Google Scholar 

  30. T. Guérin, N. Levernier, O. Bénichou, and R. Voituriez, Nature 534, 356 (2016), arXiv: 1701.06887.

    Article  ADS  Google Scholar 

  31. P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  32. R. Fazio, Phys. Rep. 355, 235 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Hua Lu or You-Quan Li.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304304), and the National Natural Science Foundation of China (Grant No. 11935012).

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, WW., Lu, LH. & Li, YQ. Quantum model for understanding protein misfolding behavior—phase diagram and manual intervention. Sci. China Phys. Mech. Astron. 64, 260011 (2021). https://doi.org/10.1007/s11433-020-1691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1691-3

Keywords

Navigation