Skip to main content
Log in

Size-dependent optical and electrochemical properties of gold nanoparticles to L-cysteine

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

A series of gold nanoparticles were synthesized by stepwise growth method under the condition of citrate as a reducing agent and stabilizer. The optical properties with the maximum absorption wavelength (λmax) and electrochemical properties of the oxidation potential (Ep) dependence on the particle size were analyzed. The method of calculating the particle size from the UV-visible spectrum and the electrochemical oxidation peak was deduced, following the theoretical prediction trend and consistent with previous observations. Furthermore, we investigated the application performance based on the electrochemical catalytic activity and the aggregation of the spherical gold nanoparticles using L-cysteine as a target. The results indicated that the optical and electrochemical properties of the gold nanoparticles to L-cysteine were closely related to the particle size of gold nanoparticles. With the increased size of the nanoparticles, the full width at half maximum in the UV-visible absorption spectrum increased and the electrochemical oxidation potential was positively shifted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beisl S, Miltner A, Friedl A (2017) Lignin from micro-to nanosize: production methods. Int J Mol Sci 18:1244

    Article  CAS  Google Scholar 

  2. Xu T, Zhang NH, Nichols L, Shi D, Wen X (2007) Modification of nanostructured materials for biomedical applications. Mater Sci Eng C 27:579–594

    Article  CAS  Google Scholar 

  3. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  4. Wang N, Zhao W, Zhang M, Cao P, Sun S, Ma H, Lin M (2021) Bismuth-induced synthesis of Au-X (X=Pt, Pd) nanoalloys for electrocatalytic reactions. Chem Commun 57:391–394

    Article  CAS  Google Scholar 

  5. Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349–3357

    Article  Google Scholar 

  6. Dutta J, Hofmann H (2003) Nanomaterials. Swiss Federal Institute of Technology, E-book:9–20

  7. Yang XY, Hu WY, Liu FS, Li Y (2012) Atomistic simulation for the size-dependent melting behaviour of vanadium nanowires. J Phys D Appl Phys 45:485304–485312

    Article  Google Scholar 

  8. Cui ZX, Zhao MZ, Lai WP, Xue YQ (2011) Thermodynamics of size effect on phase transition temperatures of dispersed phases. J Phys Chem C 115:22796–22803

    Article  CAS  Google Scholar 

  9. Wei XC, Bhojappa S, Lin LS, Viadero RC (2012) Performance of nano-magnetite for removal of selenium from aqueous solutions. Environ Eng Sci 29:526–532

    Article  CAS  Google Scholar 

  10. Okubo M, Hosono E, Kudo T, Zhou HS, Honma I (2009) Size effect on electrochemical property of nanocrystalline LiCoO2 synthesized from rapid thermal annealing method. Solid State Ionics 180:612–615

    Article  CAS  Google Scholar 

  11. Mogensen KB, Kneipp K (2014) Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: monitoring the onset of surface screening effects. J Phys Chem C 118:28075–28083

    Article  CAS  Google Scholar 

  12. McGuire MM, Edwards KJ, Banfield JF, Hamers RJ (2001) Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochim Cosmochim Acta 65:1243–1258

    Article  CAS  Google Scholar 

  13. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  14. Masitas RA, Allen SL, Zamborini FP (2016) Size-dependent electrophoretic deposition of catalytic gold nanoparticles. J Am Chem Soc 138:15295–15298

    Article  CAS  Google Scholar 

  15. Plieth WJ (1982) Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. J Phys Chem 86:3166–3170

    Article  CAS  Google Scholar 

  16. Redmond PL, Hallock AJ, Brus LE (2005) Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett 5:131–135

    Article  CAS  Google Scholar 

  17. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  18. Frens G (1973) Nature. Phys Sci 241:20–22

    CAS  Google Scholar 

  19. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  20. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening. Langmuir. 27:11098–11105

    Article  Google Scholar 

  21. Ivanova OS, Zamborini FP (2010) Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte. Anal Chem 82:5844–5850

    Article  CAS  Google Scholar 

  22. Shelley EJ, Ryan D, Johnson SR, Couillard M, Fitzmaurice D, Nellist PD, Chen Y, Palmer RE, Preece JA (2002) Dialkyl sulfides: novel passivating agents for gold nanoparticles. Langmuir 18:1791–1795

    Article  CAS  Google Scholar 

  23. Hasan M, Bethell D, Brust M (2002) The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold: 1H-NMR spectroscopic evidence from solutions of gold clusters. J Am Chem Soc 125:1132–1133

    Article  Google Scholar 

  24. Zhang X, Deng J, Shi G, Zhou T (2015) Valence-tautomeric infinite coordination polymer nanoparticles for encapsulation of rhodamine B and its potential application for colorimetric and fluorescence dual sensing of hypochlorite. RSC Adv 5:107964–107969

    Article  CAS  Google Scholar 

  25. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  26. Khanna PK, Gokhale R, Subbarao VVVS, Vishwanath AK, Das BK, Satyanarayana CVV (2005) PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater Chem Phys 92:229–233

    Article  CAS  Google Scholar 

  27. Qiu H, Xue L, Ji G, Zhou G, Huang X, Qu Y, Gao P (2009) Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens Bioelectron 24:3014–3018

    Article  CAS  Google Scholar 

  28. Liu Z, Zhang H, Hou S, Ma H (2012) Highly sensitive and selective electrochemical detection of l-cysteine using nanoporous gold. Microchim Acta 177:427–433

    Article  CAS  Google Scholar 

  29. Fawcett WR, Fedurco M, Kovácová Z, Borkowska Z (1994) Oxidation of cysteine, cysteinesulfinic acid cysteic acid on a polycrystalline gold electrode. J Electroanal Chem 368:265–274

    Article  CAS  Google Scholar 

  30. Koryta J, Pradac J (1968) Electrode processes of the sulfhydryl-disulfide system: II. Cystine at a gold electrode J Electroanal Chem 17:177–183

    Article  CAS  Google Scholar 

  31. Wain AJ (2013) Imaging size effects on the electrocatalytic activity of gold nanoparticles using scanning electrochemical microscopy. Electrochim Acta 92:383–391

    Article  CAS  Google Scholar 

  32. Rhee CK, Kim BJ, Ham C, Kim YJ, Song K, Kwon K (2009) Size effect of Pt nanoparticles on catalytic activity in oxidation of methanol and formic acid: comparison to Pt (111), Pt (100), and polycrystalline Pt electrodes. Langmuir. 25:7140–7147

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P., Wang, N., Chen, D. et al. Size-dependent optical and electrochemical properties of gold nanoparticles to L-cysteine. Gold Bull 54, 97–103 (2021). https://doi.org/10.1007/s13404-021-00296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00296-3

Keywords

Navigation