Skip to main content
Log in

Effects of delamination in drilling glass/polyester composite

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Considering failures during machinery processes such as drilling, a precautionary analysis involving delamination and the corresponding dissipated energy is required, especially for composite structures. In this context, because of the complexity of both the analysis procedure and experimental test setup, most studies prefer to represent mode I and III interlaminar crack propagation instead of that involving mode II. Therefore, in this study, the effect of mode II delamination and corresponding interlaminar crack propagation was considered during the drilling process of multilayered glass/polyester composites using both numerical and experimental approaches. In the experimental procedure, the mechanical properties of the glass/polyester specimens were obtained according to ASTM D3039. In addition, the interlaminar mixed-mode (I/II) loadings were determined using an ARCAN test fixture so that the fracture toughness of glass/polyester could then be identified. The mode II critical strain energy release rate (CSERR) was then obtained using an experimental test performed using an ARCAN fixture and the virtual crack closure technique (VCCT). It was determined that the numerical approach was in accordance with the experiments, and more than 95% of crack propagation could be attributed to mode II compared to the two other modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kavad B, Pandey A B, Tadavi M V, Jakharia H C. A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technology, 2014, 14: 457–464

    Article  Google Scholar 

  2. Tagliaferri V, Caprino G, Diterlizzi A. Effect of drilling parameters on the finish and mechanical properties of GFRP composites. International Journal of Machine Tools & Manufacture, 1990, 30(1): 77–84

    Article  Google Scholar 

  3. Jain S, Yang D C. Effects of feedrate and chisel edge on delamination in composites drilling. Journal of Engineering for Industry, 1993, 115(4): 398–405

    Article  Google Scholar 

  4. König W, Grass P. Quality definition and assessment in drilling of fibre reinforced thermosets. CIRP Annals, 1989, 38(1): 119–124

    Article  Google Scholar 

  5. Takeyama H, Kato S. Burrless drilling by means of ultrasonic vibration. CIRP Annals, 1991, 40(1): 83–86

    Article  Google Scholar 

  6. Zhang D Y, Feng X J, Wang L J, Chen D C. Study on the drill skidding motion in ultrasonic vibration microdrilling. International Journal of Machine Tools & Manufacture, 1994, 34(6): 847–857

    Article  Google Scholar 

  7. Wang X, Wang L, Tao J. Investigation on thrust in vibration drilling of fiber-reinforced plastics. Journal of Materials Processing Technology, 2004, 148(2): 239–244

    Article  Google Scholar 

  8. Wang L, Wang L J, He Y H, Yang Z J. Prediction and computer simulation of dynamic thrust and torque in vibration drilling. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture, 1998, 212(6): 489–497

    Article  Google Scholar 

  9. Zhang L, Wang L, Xin W. Study on vibration drilling of fiber reinforced plastics with hybrid variation parameters method. Composites. Part A, Applied Science and Manufacturing, 2003, 34(3): 237–244

    Article  Google Scholar 

  10. Khashaba U, Seif M, Elhamid M. Drilling analysis of chopped composites. Composites. Part A, Applied Science and Manufacturing, 2007, 38(1): 61–70

    Article  Google Scholar 

  11. El-Sonbaty I, Khashaba U, Machaly T. Factors affecting the machinability of GFR/epoxy composites. Composite Structures, 2004, 63(3–4): 329–338

    Article  Google Scholar 

  12. Khashaba U, El-Sonbaty I A, Selmy A I, Megahed A A. Machinability analysis in drilling woven GFR/epoxy composites: Part I-Effect of machining parameters. Composites. Part A, Applied Science and Manufacturing, 2010, 41(3): 391–400

    Article  Google Scholar 

  13. Khashaba U. Drilling of polymer matrix composites: A review. Journal of Composite Materials, 2013, 47(15): 1817–1832

    Article  Google Scholar 

  14. Kilickap E. Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Systems with Applications, 2010, 37(8): 6116–6122

    Article  Google Scholar 

  15. Rajamurugan T, Shanmugam K, Rajakumar S, Palanikumar K. Modelling and analysis of thrust force in drilling of GFRP Composites using Response Surface Methodology (RSM). Procedia Engineering, 2012, 38: 3757–3768

    Article  Google Scholar 

  16. Reddy A R, Reddy K S, Hussain P, Reddy B S, Babu S S. An experimental study using design of experiment method to compare the performance of solid carbide and HSS drills in drilling of GFRP composite material. International Journal of Mechanical Engineering and Robotics Research, 2013, 2(4): 216–221

    Google Scholar 

  17. Khashaba U, El-Sonbaty I A, Selmy A I, Megahed A A. Drilling analysis of woven glass fiber-reinforced/epoxy composites. Journal of Composite Materials, 2013, 47(2): 191–205

    Article  Google Scholar 

  18. Venkateshwaran N, ElayaPerumal A. Hole quality evaluation of natural fiber composite using image analysis technique. Journal of Reinforced Plastics and Composites, 2013, 32(16): 1188–1197

    Article  Google Scholar 

  19. Ramkumar J, Malhotra S, Krishnamurthy R. Effect of workpiece vibration on drilling of GFRP laminates. Journal of Materials Processing Technology, 2004, 152(3): 329–332

    Article  Google Scholar 

  20. Sadek A, Attia M H, Meshreki M, Shi B. Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates. CIRP Annals, 2013, 62(1): 91–94

    Article  Google Scholar 

  21. Rubio J C, Abrao A M, Faria P E, Correia A E, Davim J P. Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. International Journal of Machine Tools & Manufacture, 2008, 48(6): 715–720

    Article  Google Scholar 

  22. Hocheng H, Tsao C. Effects of special drill bits on drilling-induced delamination of composite materials. International Journal of Machine Tools & Manufacture, 2006, 46(12–13): 1403–1416

    Article  Google Scholar 

  23. Hocheng H, Tsao C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 2003, 140(1–3): 335–339

    Article  Google Scholar 

  24. Tsao C, Hocheng H. Effect of eccentricity of twist drill and candle stick drill on delamination in drilling composite materials. International Journal of Machine Tools & Manufacture, 2005, 45(2): 125–130

    Article  Google Scholar 

  25. Tsao C. Effect of induced bending moment (IBM) on critical thrust force for delamination in step drilling of composites. International Journal of Machine Tools & Manufacture, 2012, 59: 1–5

    Article  Google Scholar 

  26. Tsao C, Hocheng H. Effects of peripheral drilling moment on delamination using special drill bits. Journal of Materials Processing Technology, 2008, 201(1–3): 471–476

    Article  Google Scholar 

  27. Zabala H, Aretxabaleta L, Castillo G, Aurrekoetxea J. Dynamic 4 ENF test for a strain rate dependent mode II interlaminar fracture toughness characterization of unidirectional carbon fibre epoxy composites. Polymer Testing, 2016, 55: 212–218

    Article  Google Scholar 

  28. Msekh M A, Cuong N H, Zi G, Areias P, Zhuang X, Rabczuk T. Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Engineering Fracture Mechanics, 2018, 188: 287–299

    Article  Google Scholar 

  29. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    Article  MathSciNet  Google Scholar 

  30. Machado J M, Marques E A S, Campilho R D S G, da Silva L F M. Mode II fracture toughness of CFRP as a function of temperature and strain rate. Composites. Part B, Engineering, 2017, 114: 311–318

    Article  Google Scholar 

  31. Fernandes R L, de Moura M F S F, Moreira RDF. Effect of moisture on pure mode I and II fracture behaviour of composite bonded joints. International Journal of Adhesion and Adhesives, 2016, 68: 30–38

    Article  Google Scholar 

  32. Sajith S, Arumugam V, Dhakal H N. Effects of curing pressure on mode II fracture toughness of uni-directional GFRP laminates. Polymer Testing, 2015, 48: 59–68

    Article  Google Scholar 

  33. Triki E, Zouari B, Dammak F. Dependence of the interlaminar fracture toughness of E-Glass/Polyester woven fabric composites laminates on ply orientation. Engineering Fracture Mechanics, 2016, 159: 63–78

    Article  Google Scholar 

  34. Davies P, Casari P, Carlsson L A. Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen. Composites Science and Technology, 2005, 65(2): 295–300

    Article  Google Scholar 

  35. Huddhar A, Desai A, Sharanaprabhu C M, Kudari S K, Gouda P S S. Studies on effect of pre-crack length variation on Inter-laminar fracture toughness of a Glass Epoxy laminated composite. IOP Conference Series. Materials Science and Engineering, 2016, 149: 012161

    Google Scholar 

  36. Sheikh-Ahmad J Y. Machining of polymer composites. New York: Springer, 2009

    Book  Google Scholar 

  37. Ho-Cheng H, Dharan C K H. Delamination during drilling in composite laminates. Journal of Engineering for Industry, 1990, 112(3): 236–239

    Article  Google Scholar 

  38. Zitoune R, Collombet F. Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures. Composites Part A, Applied Science and Manufacturing, 2007, 38(3): 858–866

    Article  Google Scholar 

  39. Zitoune R, Krishnaraj V, Collombet F, Le Roux S. Experimental and numerical analysis on drilling of carbon fibre reinforced plastic and aluminium stacks. Composite Structures, 2016, 146: 148–158

    Article  Google Scholar 

  40. Rahme P, Landon Y, Lachaud F, Piquet R, Lagarrigue P. Delamination-free drilling of thick composite materials. Composites. Part A, Applied Science and Manufacturing, 2015, 72: 148–159

    Article  Google Scholar 

  41. Noda N A, Xu C. Controlling parameter of the stress intensity factors for a planar interfacial crack in three-dimensional bimaterials. International Journal of Solids and Structures, 2008, 45(3–4): 1017–1031

    Article  MATH  Google Scholar 

  42. Tweed J, Das S, Rooke D, Rooke D P. The stress intensity factors of a radial crack in a finite elastic disc. International Journal of Engineering Science, 1972, 10(3): 323–335

    Article  MATH  Google Scholar 

  43. Tweed J, Rooke D. The stress intensity factor of an edge crack in a finite elastic disc. International Journal of Engineering Science, 1973, 11(1): 65–73

    Article  MATH  Google Scholar 

  44. Ma K, Liu C. Semi-weight function method on computation of stress intensity factors in dissimilar materials. Applied Mathematics and Mechanics, 2004, 25(11): 1241–1248

    Article  MATH  Google Scholar 

  45. Jones I, Rothwell G. Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinders. Engineering Fracture Mechanics, 2001, 68(4): 435–454

    Article  Google Scholar 

  46. Seifi R. Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method. Theoretical and Applied Fracture Mechanics, 2015, 75: 113–123

    Article  Google Scholar 

  47. Chen A J, Zeng W J. Weight function for stress intensity factors in rotating thick-walled cylinder. Applied Mathematics and Mechanics, 2006, 27(1): 29–35

    Article  MATH  Google Scholar 

  48. Wang Y, Tham L G, Lee P K K, Tsui Y. A boundary collocation method for cracked plates. Computers & Structures, 2003, 81(28–29): 2621–2630

    Article  Google Scholar 

  49. Fett T. Stress intensity factors and T-stress for single and double-edge-cracked circular disks under mixed boundary conditions. Engineering Fracture Mechanics, 2002, 69(1): 69–83

    Article  Google Scholar 

  50. Kotousov A, Berto F, Lazzarin P, Pegorin F. Three dimensional finite element mixed fracture mode under anti-plane loading of a crack. Theoretical and Applied Fracture Mechanics, 2012, 62: 26–33

    Article  Google Scholar 

  51. Tsang D, Oyadiji S, Leung A. Two-dimensional fractal-like finite element method for thermoelastic crack analysis. International Journal of Solids and Structures, 2007, 44(24): 7862–7876

    Article  MATH  Google Scholar 

  52. Branco R, Antunes F. Finite element modelling and analysis of crack shape evolution in mode-I fatigue Middle Cracked Tension specimens. Engineering Fracture Mechanics, 2008, 75(10): 3020–3037

    Article  Google Scholar 

  53. Sanati H, Amini A, Reshadi F, Soltani N, Faraji G, Zalnezhad E. The stress intensity factors (SIFs) of cracked half-plane specimen in contact with semi-circular object. Theoretical and Applied Fracture Mechanics, 2015, 75: 104–112

    Article  Google Scholar 

  54. Maschke H G, Kuna M. A review of boundary and finite element methods in fracture mechanics. Theoretical and Applied Fracture Mechanics, 1985, 4(3): 181–189

    Article  MathSciNet  Google Scholar 

  55. Mavrothanasis F, Pavlou D. Mode-I stress intensity factorderivation by a suitable Green’s function. Engineering Analysis with Boundary Elements, 2007, 31(2): 184–190

    Article  MATH  Google Scholar 

  56. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MATH  Google Scholar 

  57. Fett T, Bahr H. Mode I stress intensity factors and weight functions for short plates under different boundary conditions. Engineering Fracture Mechanics, 1999, 62(6): 593–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Safarabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjiani, M., Safarabadi, M., Mehri-Khansari, N. et al. Effects of delamination in drilling glass/polyester composite. Front. Struct. Civ. Eng. 15, 552–567 (2021). https://doi.org/10.1007/s11709-021-0699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-021-0699-7

Keywords

Navigation