Skip to main content
Log in

Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A phosphine oxide-containing bio-based curing agent was synthesized by addition reaction between furan derivatives and diphenylphosphine oxide. The molecular structure of the as-prepared bio-based curing agent was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Dynamic mechanical analysis results indicated that with the increase of bio-based curing agent content, the glass transition temperature of epoxy/bio-based curing agent composites decreased, which was related to the steric effect of diphenylphosphine oxide species that possibly hinder the curing reaction as well as the reduction in the cross-linking density by mono-functional N-H. By the addition of 7.5 wt-% bio-based curing agent, the resulting epoxy composite achieved UL-94 V-0 rating, in addition to limiting oxygen index of 32.0 vol-%. With the increase of content for the bio-based curing agent, the peak of heat release rate and total heat release of the composites gradually decreased. The bio-based curing agent promoted the carbonization of the epoxy matrix, leading to higher char yield with good thermal resistance. The high-quality char layer served as an effective barrier to retard the diffusion of decomposition volatiles and oxygen between molten polymers and the flame. This study provides a renewable strategy for fabricating flame retardant and transparent epoxy thermoset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo W W, Nie S, Kalali E N, Wang X, Wang W, Cai W, Song L, Hu Y. Construction of SiO2@UiO-66 core shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins. Composites. Part B, Engineering, 2019, 176: 107261

    Article  CAS  Google Scholar 

  2. Guo W W, Wang X, Gangireddy C S R, Wang J L, Pan Y, Xing W, Song L, Hu Y. Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Composites. Part A, Applied Science and Manufacturing, 2019, 116: 13–23

    Article  CAS  Google Scholar 

  3. Wang X, Hu Y, Song L, Xing W Y, Lu H D, Lv P, Jie G X. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer, 2010, 51(11): 2435–2445

    Article  CAS  Google Scholar 

  4. Kong Q H, Sun Y L, Zhang C J, Guan H M, Zhang J H, Wang D Y, Zhang F. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Composites Science and Technology, 2019, 182: 107748

    Article  CAS  Google Scholar 

  5. Kong Q H, Wu T, Zhang J H, Wang D Y. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Composites Science and Technology, 2018, 154: 136–144

    Article  CAS  Google Scholar 

  6. Horold S, Erftstadt D E. Flame-retarding thermosetting compositions. US Patent, 6420459 B1, 2002-07-16

  7. Perret B, Schartel B, Stoss K, Ciesielski M, Diederichs J, Doring M, Kramer J, Altstadt V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. European Polymer Journal, 2011, 47(5): 1081–1089

    Article  CAS  Google Scholar 

  8. Cai W, Feng X, Wang B, Hu W, Yuan B, Hong N, Hu Y. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chemical Engineering Journal, 2017, 316: 514–524

    Article  CAS  Google Scholar 

  9. Cai W, Wang J, Pan Y, Guo W, Mu X, Feng X, Yuan B, Wang X, Hu Y. Mussel-inspired functionalization of electrochemically exfoliated graphene: based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. Journal of Hazardous Materials, 2018, 352: 57–69

    Article  CAS  Google Scholar 

  10. Cai W, Cai T, He L, Chu F, Mu X, Han L, Hu Y, Wang B, Hu W. Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane. Journal of Hazardous Materials, 2020, 387: 121971

    Article  CAS  Google Scholar 

  11. Cai W, Li Z, Mu X, He L, Zhou X, Guo W, Song L, Hu Y. Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change. Journal of Hazardous Materials, 2021, 404: 124106

    Article  CAS  Google Scholar 

  12. Shi Y Q, Liu C, Duan Z P, Yu B, Liu M H, Song P A. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chemical Engineering Journal, 2020, 399: 125829

    Article  CAS  Google Scholar 

  13. Shi Y Q, Yu B, Duan L J, Gui Z, Wang B B, Hu Y, Yuen, Rechard K K. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. Journal of Hazardous Materials, 2017, 332: 87–96

    Article  CAS  Google Scholar 

  14. Zhou K Q, Tang G, Gao R, Jiang S D. In situ growth of 0D silica nanospheres on 2D molybdenum disulfide nanosheets: towards reducing fire hazards of epoxy resin. Journal of Hazardous Materials, 2018, 344: 1078–1089

    Article  CAS  Google Scholar 

  15. Qiu S L, Zou B, Zhang T, Ren X Y, Yu B, Zhou Y F, Kan Y C, Hu Y. Integrated effect of NH2-functionalized/triazine based covalent organic framework black phosphorus on reducing fire hazards of epoxy nanocomposites. Chemical Engineering Journal, 2020, 401: 126058

    Article  CAS  Google Scholar 

  16. Xu W Z, Yan H Y, Wang G S, Qin Z Q, Fan L J, Yang Y X. A silicacoated metal-organic framework/graphite-carbon nitride hybrid for improved fire safety of epoxy resins. Materials Chemistry and Physics, 2021, 258: 123810

    Article  CAS  Google Scholar 

  17. Hergenrother P M, Thompson C M, Smith J G Jr, Connell J W, Hinkley J A, Lyon R E, Moulton R. Flame retardant aircraft epoxy resins containing phosphorus. Polymer, 2005, 46(14): 5012–5024

    Article  CAS  Google Scholar 

  18. Mercado L A, Galia M, Reina J A. Silicon-containing flame retardant epoxy resins: synthesis, characterization and properties. Polymer Degradation & Stability, 2006, 91(11): 2588–2594

    Article  CAS  Google Scholar 

  19. Hsiue G H, Wang W J, Chang F C. Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxy resins. Journal of Applied Polymer Science, 1999, 73(7): 1231–1238

    Article  CAS  Google Scholar 

  20. Levchik S, Piotrowski A, Weil E, Yao Q. New developments in flame retardancy of epoxy resins. Polymer Degradation & Stability, 2005, 88(1): 57–62

    Article  CAS  Google Scholar 

  21. Sponton M, Ronda J C, Galia M, Cadiz V. Flame retardant epoxy resins based on diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide. Journal of Polymer Science. Part A, Polymer Chemistry, 2007, 45(11): 2142–2151

    Article  CAS  Google Scholar 

  22. Zhao J, Dong X, Huang S, Tian X, Song L, Yu Q, Wang Z. Performance comparison of flame retardant epoxy resins modified by DPO-PHE and DOPO-PHE. Polymer Degradation & Stability, 2018, 156: 89–99

    Article  CAS  Google Scholar 

  23. Tian X, Yin Q, Wang Z. Synthesis of diphenylphosphine oxide derivative and its flame retardant application in epoxy resin. Journal of Photopolymer Science and Technology, 2020, 32(6): 769–778

    Article  Google Scholar 

  24. Yang D Q, Dong L M, Hou X D, Zheng W K, Xiao J, Xu J Z, Ma H Y. Synthesis of bio-based poly (cyclotriphosphazene-resveratrol) microspheres acting as both flame retardant and reinforcing agent to epoxy resin. Polymers for Advanced Technologies, 2020, 31(1): 135–145

    Article  Google Scholar 

  25. Zhang J H, Mi X Q, Chen S Y, Xu Z J, Zhang D H, Miao M H, Wang J S. A bio-based hyperbranched flame retardant for epoxy resins. Chemical Engineering Journal, 2020, 381: 122719

    Article  CAS  Google Scholar 

  26. Ma C, Li J. Synthesis of an organophosphorus flame retardant derived from daidzein and its application in epoxy resin. Composites. Part B, Engineering, 2019, 178: 107471

    Article  CAS  Google Scholar 

  27. Xie W Q, Huang S W, Tang D L, Liu S M, Zhao J Q. Biomass-derived Schiff base compound enabled fire-safe epoxy thermoset with excellent mechanical Properties and high glass transition temperature. Chemical Engineering Journal, 2020, 394: 123667

    Article  CAS  Google Scholar 

  28. Dai J Y, Teng N, Liu J K, Feng J X, Zhu J, Liu X Q. Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements. Composites. Part B, Engineering, 2019, 179: 107523

    Article  CAS  Google Scholar 

  29. Tian Y Z, Wang Q, Hu Y J, Sun H, Cui Z C, Kou L L, Cheng J, Zhang J Y. Preparation and shape memory properties of rigidflexible integrated epoxy resins via tunable micro-phase separation structures. Polymer, 2019, 178: 121592

    Article  CAS  Google Scholar 

  30. Chi Z Y, Guo Z W, Xu Z C, Zhang M J, Li M, Shang L, Ao Y H. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polymer Degradation & Stability, 2020, 176: 109151

    Article  CAS  Google Scholar 

  31. Tang G, Wang X, Zhang R, Yang W, Hu Y, Song L, Gong X L. Facile synthesis of lanthanum hypophosphite and its application in glass-fiber reinforced polyamide 6 as a novel flame retardant. Composites. Part A, Applied Science and Manufacturing, 2013, 54: 1–9

    Article  CAS  Google Scholar 

  32. Wang X, Song L, Yang H Y, Xing W Y, Kandola B, Hu Y. Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. Journal of Materials Chemistry, 2012, 22(41): 22037–22043

    Article  CAS  Google Scholar 

  33. Tang G, Liu X L, Zhou L, Zhang P, Deng D, Jiang H H. Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Advanced Powder Technology, 2020, 31(1): 279–286

    Article  CAS  Google Scholar 

  34. Yan Y, Huang P, Zhang H P. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Frontiers of Chemical Science and Engineering, 2020, 13(4): 772–783

    Article  CAS  Google Scholar 

  35. Guo W W, Zhao Y Y, Wang X, Cai W, Wang J L, Song L, Hu Y. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Composites. Part B, Engineering, 2020, 192: 107990

    Article  CAS  Google Scholar 

  36. Guo W W, Wang X, Huang J L, Zhou Y F, Cai W, Wang J L, Song L, Hu Y. Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chemical Engineering Journal, 2020, 398: 125661

    Article  CAS  Google Scholar 

  37. Wang X, Zhou S, Xing W Y, Yu B, Feng X M, Song L, Hu Y. Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(13): 4383–4390

    Article  CAS  Google Scholar 

  38. Tang G, Zhou L, Zhang P, Han Z Q, Chen D P, Liu X Y, Zhou Z J. Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. Journal of Thermal Analysis and Calorimetry, 2020, 142(2): 129–137

    Google Scholar 

  39. Zhu Z M, Wang L X, Dong L P. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polymer Degradation & Stability, 2019, 162: 129–137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Fundation of China (Grant Nos. 51978002 and 51403004), the Jiaxing Science and Technology Project (Grant No. 2020AD10020) and Postdoctoral Science Foundation of China (Grant No. 2017M610399).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Tang or Dan Deng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Zhao, R., Deng, D. et al. Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative. Front. Chem. Sci. Eng. 15, 1269–1280 (2021). https://doi.org/10.1007/s11705-021-2042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2042-1

Keywords

Navigation