Skip to main content
Log in

Variable levels of antibiosis and/or antixenosis of Bt and non-Bt maize genotypes on Dalbulus maidis (Hemiptera: Cicadellidae)

  • Review Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The corn leafhopper Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) poses a serious threat to the crop, causing direct and indirect damage to plants. The present study aimed to investigate the possible expression of resistance by antixenosis and/or antibiosis against D. maidis in 11 corn genotypes [8 non-Bt (60XB14, 90XB06, XB 9003, XB 8018, XB 8010, IAC 8390, IAC 8046, and IAC AIRAN) and 3 Bt (XB 7116 Bt, XB 8010 Bt, and DKB 310 Bt)] previously selected in a greenhouse. Initially, no choice preference tests for oviposition were performed to characterize the expression of antixenosis. To characterize the expression of antibiosis/antixenosis, the insects were confined to leaves of different genotypes to assess the following parameters: duration of each nymphal stage, nymphal period, viability per instar, total viability, and adult longevity. Additionally, morphological and physical analyses of the genotypes were carried out to establish correlations with the resistance categories. The genotypes 90XB06, IAC 8390, XB 9003 and DKB 310 PRO3 expressed antixenosis against leafhoppers, reducing insect oviposition. The genotypes 60XB14, 90XB06, IAC 8046, XB 8018 and IAC 8390 expressed antibiosis and/or antixenosis against leafhoppers, reducing nymphal viability. The hardness of the ribs is probably associated with the resistance of some of the evaluated genotypes and is an important morphological defense against leafhoppers. The results of this study are novel and can aid in corn-breeding programs focused on plant resistance to sucking insects, with relevant impacts on the integrated pest management of the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arora R, Sandhu S (2017) Insect-plant interrelationships. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 1–44. https://doi.org/10.1007/978-981-10-6056-4

    Chapter  Google Scholar 

  • Baldin ELL, Cruz PL, Morando R, Silva IF, Bentivenha JPF, Tozin LRS, Rodrigues TM (2016) Evaluating categories of resistance in soybean genotypes from the United States and Brazil to Aphis glycines (Hemiptera: Aphididae). Fla Entomol 99:487–495

    Article  Google Scholar 

  • Baldin ELL, Vendramim JD, Lourenção AL (2019) Resistência de plantas a insetos: fundamentos e aplicações. Fealq, Piracicaba

    Google Scholar 

  • Bellota E, Medina RF, Bernal JS (2013) Physical leaf defenses—altered by Zea life-history evolution, domestication, and breeding—mediate oviposition preference of a specialist leafhopper. Entomol Exp Appl 149:185–195. https://doi.org/10.1111/eea.12122

    Article  Google Scholar 

  • Bueno NM, Baldin ELL, Canassa VF, do Prado Ribeiro L, da Silva IF, Lourenção AL, Koch RL (2020) Characterization of antixenosis and antibiosis of corn genotypes to Dichelops melacanthus Dallas (Hemiptera: Pentatomidae). Gesunde Pflanz. https://doi.org/10.1007/s10343-020-00529-z

    Article  Google Scholar 

  • Burtet LM, Bernardi O, Melo AA, Pes MP, Strahl TT, Guedes JVC (2017) Managing fall armyworm, (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Manag Sci 73(12):2569–2577

    Article  CAS  Google Scholar 

  • Catarino R, Ceddia G, Areal F, Parisey N, Park J (2016) Managing maize under pest species competition: is Bt (Bacillus thuringiensis) maize the solution? Ecosphere 7(6):e01340

    Article  Google Scholar 

  • Collins HL, Pitre HN (1969) Corn stunt vector leafhopper attractancy to and oviposition preference for hybrid dent corn. Ann Entomol Soc Am 62:773–775. https://doi.org/10.1093/aesa/62.4.770

    Article  Google Scholar 

  • Conab (2019) Acompanhamento da safra brasileira de grãos, safra 2019/20—Primeiro levantamento, Brasília. http://www.conab.gov.br. Accessed 13 Nov 2019

  • Cruz I (2012) Manejo de Pragas não Alvo de Milho Bt Incidentes na parte aérea da planta. In: Paterniani M, Duarte AP, Tsunechiro A (eds) Diversidade e inovações na cadeia produtiva de milho e sorgo na era dos transgênicos. ABMS/IAC, Campinas, pp 321–340

    Google Scholar 

  • Glas JJ, Schimmel BC, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103. https://doi.org/10.3390/ijms131217077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Zhao J, Cui D (1993) Relationship between content of secondary catabolite-lignin-in soybean and soybean resistance to the soybean aphid. Plant Prot 19:8–9

    Google Scholar 

  • ISAAA (2017) International service for the acquisition of agri-biotech Applications. Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. Ithaca

  • Lara FM (1991) Princípios de resistência de plantas a insetos. Ícone, São Paulo

    Google Scholar 

  • Lopes JRS, Oliveira CM (2004) Vetores de vírus e molicutes em milho em milho. In: Oliveira E, Oliveira CM (eds) Doenças em milho: molicutes, vírus, vetores, mancha por Phaeosphaeria. Embrapa Milho e Sorgo, Sete Lagoas, pp 35–60

    Google Scholar 

  • Loy DD, Lundy EL (2019) Nutritional properties and feeding value of corn and its coproducts, 3rd edn. Elsevier Inc, Amsterdam, pp 633–659. https://doi.org/10.1016/B978-0-12-811971-6.00023-1

    Book  Google Scholar 

  • Malavolta E (2006) Manual de nutrição mineral de plantas. Agronômica Ceres, Ouro Fino

    Google Scholar 

  • Marín L et al (1987) Biologia y comportamiento de Dalbulus maidis (Homoptera: Cicadellidae). Rev Peru Entomol 30:113–117

    Google Scholar 

  • Minitab I (2010) Minitab minitab 16 statistical software PA minitab, Inc, State Coll. www.minitab.com. Accessed 10 Oct 2019

  • Nault LR (1980) Maize bushy stunt and corn stunt: a comparison of disease symptoms, pathogen host ranges, and vectors. Phytopathology 70:659–662. https://doi.org/10.1094/Phyto-70-659

    Article  Google Scholar 

  • Oliveira E, Magalhães PC, Gomide RL, Vasconcelos CA, Souza IRP, Oliveira CM, Cruz I, Schaffert RE (2002) Growth and nutrition of mollicute-infected maize. Plant Dis 86:945–949. https://doi.org/10.1094/PDIS.2002.86.9.945

    Article  PubMed  Google Scholar 

  • Oliveira E, Oliveira CM, Magalhães PC, AndradeCLT, Hogenhout SA (2005) Spiroplasma and phytoplasma infection reduce kernel production and nutrient and water contents of several but not all maize cultivars [Zea mays L.]. Maydica, Italy. http://agris.fao.org/agris-search/search.do?recordID=IT2006601811. Accessed 16 Aug 2019

  • Oliveira CM, Oliveira E, Canuto M, Cruz I (2007) Controle químico da cigarrinha-do-milho e incidência dos enfezamentos causados por molicutes. Pesqui Agropecu Bras 42:297–303. https://doi.org/10.1590/S0100-204X2007000300001

    Article  Google Scholar 

  • Oliveira CM, Lopes JRS, Nault LR (2013) Survival strategies of Dalbulus maidis during maize off-season in Brazil. Entomol Exp Appl 147:141–153. https://doi.org/10.1111/eea.12059

    Article  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. McMillan, New York

    Book  Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CAB International International Rice Research Institute, Wallingford

    Google Scholar 

  • Ritchie WS, Benson GO, Lupkes S, Salvador RJ, Ritchie SW, Ritchie BW, Salvador R (1993) How a corn plant develops. Iowa State University. Special report n. 48, Ames. www.maize.agron.iastate.edu/corngrows.html. Accessed 09 Aug 2019

  • Silva JP, Baldin EL, Canassa VF, Souza ES, Lourenção AL (2014) Assessing antixenosis of soybean entries against Piezodorus guildinii (Hemiptera: Pentatomidae). Arthr Plant Inter 8:349–359. https://doi.org/10.1007/s11829-014-9316-1

    Article  Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer, New York

    Book  Google Scholar 

  • Tsai JH (1988) Bionomics of Dalbulus Maidis (DeLong and Wolcott), a vector of mollicutes and virus (Homoptera: Cicadellidae). In: Maramorosch K, Raychaudhuri SP (eds) Mycoplasma diseases of crops: basic and applied aspects. Springer, New York, pp 209–221. https://doi.org/10.1007/978-1-4612-3808-9_12

    Chapter  Google Scholar 

  • Veljković VB, Biberdžić MO, Banković-Ilić IB, Djalović IG, Tasić MB, Nježić ZB, Stamenković OS (2018) Biodiesel production from corn oil: a review. Renew Sustain Energy Rev 91:531–548. https://doi.org/10.1016/j.rser.2018.04.024

    Article  CAS  Google Scholar 

  • Virla EG, Moya-Raygoza G, Luft-Albarracin E, Ni X (2013) Egg parasitoids of the corn leafhopper, Dalbulus maidis, in the southernmost area of its distribution range. J Insect Sci 13:1–7. https://doi.org/10.1673/031.013.1001

    Article  Google Scholar 

  • Waquil JM (1998) Corn leafhoppers as vectors of maize pathogens in Brazil. Diagnosing maize diseases in Latin America. ISAAA, Ithaca/EMBRAPA, Brasilia, 34–42. http://www.isaaa.org/Resources/publications/briefs/09/download/isaaa-brief-09-1998.pdf#page=44. Accessed 17 May 2019

  • Waquil JM, Viana PA, Cruz I, Santos JP (1999) Aspectos da biologia da cigarrinha-do-milho, Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae). An da Soc Entomol Bras 28:413–420. https://doi.org/10.1590/S0301-80591999000300005

    Article  Google Scholar 

  • Weber D, Egan PA, Muola A, Ericson LE, Stenberg JA (2020) Plant resistance does not compromise parasitoid-based biocontrol of a strawberry pest. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-62698-1

    Article  CAS  Google Scholar 

  • Zurita VYA, Anjos N, Waquil JM (2000) Aspectos biológicos de Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) em híbridos de milho (Zea mays L.). An da Soc Entomol Bras 29:347–352. https://doi.org/10.1590/S0301-80592000000200017

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting a scholarship to the first author of the present work and for granting a research productivity Grant (no. 305649/2013-2) to the second author and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Financing Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo D. Faria.

Additional information

Handling Editor: Joe Louis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, R.D., Baldin, E.L.L., Takaku, V.S. et al. Variable levels of antibiosis and/or antixenosis of Bt and non-Bt maize genotypes on Dalbulus maidis (Hemiptera: Cicadellidae). Arthropod-Plant Interactions 15, 457–465 (2021). https://doi.org/10.1007/s11829-021-09832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-021-09832-6

Keywords

Navigation