Skip to main content
Log in

Scenarios of evolution of some types of simple waves in nonlinear elastic materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Four differing from each other scenarios of evolution of the plane and close to them cylindrical solitary (simple) waves are established and commented. The material of propagation of waves is assumed to be elastic, the nonlinear deformation of which is described by the five-constant Murnaghan model (potential). The initial wave profile is given by the cosinusoidal, Gauss, Whittaker, Macdonald functions. The scenarios for the cosinusoidal (harmonic) profile are used as the classical and reference one. The methods of successive approximations and restriction on the gradient of displacement are utilized. A novelty in the description of scenarios is that the first three approximations are taken into account. This changes essentially the known (based on the first two approximations) scenarios and exposes some new wave effects. The similarities and distinctions of the presented four scenarios are commented. For example, the initial stages and effect of forming the asymmetric profile are quite similar to both the asymmetric and symmetric initial profiles. But also the scenarios show the transition from the one-hump profile to the two-hump or three-hump ones. Some of the scenarios show the drift of the profile relative to the horizontal axis. A row of other features of scenarios is commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlichen Schwingungsweite (On propagation of plane air wave with finite amplitude oscillations). Abhandlungen der Königischen Gesellschaft zu Göttingen, Bd VIII, S.43 (1860) In: Bernhards Riemann's gesammelte mathematische Werke und Wissen- schaftlicher Nachlass, 2-te Auflage. Teubner Verlag, Leipzig, S.157–179 (1892) In: B.Riemann Gesam- melte mathematische Werke, wissenschaflicher Nachlass und Nachtrage. Collected papers. Springer Ver- lag/Teubner Verlaggesellschaft, Berlin-Leipzig (1990)

  2. Whitham, J.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  3. Lighthill, M.J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  4. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solid. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  5. Maugin, G.: Nonlinear Waves in Crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  6. Murnaghan, F.: Finite Deformation in an Elastic Solid, 2nd edn. Wiley, New York (1967)

    Google Scholar 

  7. Guz A.N.: Elastic waves in bodies with initial stresses. In 2 vols. Vol.1. General problems. Vol.2. Propagation regularities. Naukova Dumka, Kiev (1986) (In Russian)

  8. Hauk, V.: Structural and Residual Stress Analysis. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Lur’e, A.: Nonlinear Theory of Elasticity. North-Holland. Amsterdam (1990)

  10. Rushchitsky, J.: Nonlinear Elastic Waves in Materials. Series: Foundations of Engineering Mechanics. Springer, Heidelberg (2014)

    Book  Google Scholar 

  11. Cattani, C., Rushchitsky, J.: Wavelet and Wave Analysis as Applied to Materials with Micro and Nano- Structure. Series on Advances in Mathematics for Applied Sciences. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  12. Zarembo, L.B., Krasilnikov, A.V.: Introduction to Nonlinear Acoustics. Moscow University Press, Mos- cow (1966).. ((In Russian))

    Google Scholar 

  13. Bloembergen, N.: Nonlinear optics a lecture note. W.A. Benjamin Inc., New York (1965)

    Google Scholar 

  14. Yariv, A.: Quantum Electronics. Wiley, New York (1967)

    Google Scholar 

  15. Rushchitsky, J.: Self-switching of displacement waves in elastic nonlinearly deformed materials. Comptes Rendus de l’Academie des Sci. Serie IIb Mecanique. 330(2), 175–180 (2002)

    Article  Google Scholar 

  16. Rushchitsky, J.J.: On the self-switching of hypersonic waves in quadratically nonlinear elastic nanocom-posites. Int. Appl. Mech. 45(1), 73–93 (2009)

    Article  MathSciNet  Google Scholar 

  17. Rushchitsky, J.J.: Features of development of theory of elastic nonlinear waves. Math. Methods Phys. Mech. Fields. 46(3), 90–105 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Rushchitsky, J.J., Sinchilo, S.V., Khotenko, I.N.: On generation of the second, fourth, eighth and follow-ing frequencies of quadratically nonlinear hyperelastic plane longitudinal wave. Int. Appl. Mech. 46(6), 90–98 (2010)

    Article  Google Scholar 

  19. Rushchitsky, J.J.: Plane Nonlinear ElasticWaves: ApproximateApproachestoAnalysis of Evolution. In: Cooper, W.A. (ed.) Cha-pter 3 in the book “Understanding Plane Waves, pp. 58–80. Nova Science Publishers, London (2019)

    Google Scholar 

  20. Gradstein, I., Ryzhik, I.: Table of Integrals series and products, 7 revised Academic Press Inc., New York (2007)

    Google Scholar 

  21. Rushchitsky, J.J., Yurchuk, V.N.: An approximate method of analysis of solitary waves in materials defo- rming elastic nonlinearly. Int. Appl. Mech. 52(3), 282–289 (2016)

    Article  Google Scholar 

  22. Rushchitsky, J.J., Yurchuk, V.N.: Numerical analysis of the evolution of plane longitudinal nonlinear elas- tic waves with different initial profiles. Int. Appl. Mech. 53(1), 104–110 (2017)

    Article  Google Scholar 

  23. Kamke, E.: Differentialgleichungen. Lösungmethoden und Lösungen. (Differential Equations. Methods of Solving and Solutions). Vieweg+Teubner Verlag, Springer Fachmedien Wiesbaden GmbH, Wiesbaden (1977)

  24. Olde Daalhuis, A.: Confluent Hypergeometric Functions. Whittaker Functions. Chapter 13. In: Olver, F.W.J., Lozie, D.W., Bousvert, R.F., Clark, C.W. (eds.) Handbook of mathematical functions. NIST National Institute of Standards and Technology, Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  25. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis an Introduction to the General Theory of Infinite Processes and of AnalyticFunctions; with an Account of the PrincipalTranscendentalFunctions, 4th edn. Cambridge University Press, Cambridge (1927)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushchitsky Jeremiah J..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rushchitsky, J.J. Scenarios of evolution of some types of simple waves in nonlinear elastic materials. Arch Appl Mech 91, 3151–3170 (2021). https://doi.org/10.1007/s00419-021-01957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01957-7

Keywords

Navigation