Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Light–matter interaction at atomic scales

Abstract

Light–matter interaction drives many systems, such as optoelectronic devices like light-emitting diodes and solar cells, biological structures like photosystem II and potential future quantum devices. The absorption or emission of light typically occurs on the sub-nanometre scale and the involved processes take place on attosecond to picosecond timescales. Light–matter interaction can be studied at atomic space-time scales by using a scanning tunnelling microscope and coupling light into or extracting light from the tunnel junction. Electromagnetic radiation couples with matter through the interaction with charge carriers, leading to excitations such as electronic transitions, collective oscillations, excitons and spin flips. These excitations can be studied with high spatial and temporal resolution using approaches in which light interacts with the tunnel junction itself or with a quantum system in the junction. This Review discusses the powerful union of photonics and scanning probe techniques.

Key points

  • How light interacts with atoms, molecules and nanostructures is explored by combining photonics with scanning probe microscopy. The scanning tunnelling microscope enables picometre spatial resolution and ultrafast light pulses allow attosecond time resolution.

  • Many systems can be studied using this approach, such as single atoms on surfaces, atomic defects, organic molecules and molecular assemblies/polymers, quantum dots and other inorganic nanostructures.

  • The tunnel junction, the (tunnelling) electrons and the entity located between tip and surface — atom, molecule or nanostructure — can either absorb the incident light or emit light as a result of inelastic tunnelling.

  • These different interaction schemes are deliberately exploited to investigate properties such as molecular vibrations, charge carrier dynamics, correlation in light emission from single molecules and electron spin resonances.

  • The diffraction limit in optical microscopy, usually limiting spatial resolution in photonics, can be overcome by the drastic enhancement of the electric field of the light wave at the apex of the tip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light–matter interaction at atomic scales.
Fig. 2: Ultrafast photon-driven or field-driven electron tunnelling and coherent control of electrons.
Fig. 3: Electron-tunnelling-induced light emission from the tunnel junction of a STM.
Fig. 4: Spectromicroscopy at atomic spatial scales.
Fig. 5: ESR on single atoms.
Fig. 6: Dynamic Coulomb blockade.

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  ADS  Google Scholar 

  2. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  ADS  Google Scholar 

  3. Gimzewski, J. K., Reihl, B., Coombs, J. H. & Schlittler, R. R. Photon emission with the scanning tunneling microscope. Z. Phys. B Condens. Matter 72, 497–501 (1988).

    Article  ADS  Google Scholar 

  4. Berndt, R., Gimzewski, J. K. & Johansson, P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796–3799 (1991).

    Article  ADS  Google Scholar 

  5. Berndt, R. et al. Photon emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993).

    Article  ADS  Google Scholar 

  6. Berndt, R. et al. Atomic resolution in photon emission induced by a scanning tunneling microscope. Phys. Rev. Lett. 74, 102–105 (1995).

    Article  ADS  Google Scholar 

  7. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  ADS  Google Scholar 

  8. Nazin, G. V., Qiu, X. H. & Ho, W. Atomic engineering of photon emission with a scanning tunneling microscope. Phys. Rev. Lett. 90, 216110 (2003).

    Article  ADS  Google Scholar 

  9. Völcker, M., Krieger, W. & Walther, H. Laser-driven scanning tunneling microscope. Phys. Rev. Lett. 66, 1717–1720 (1991).

    Article  ADS  Google Scholar 

  10. Nunes, G. & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029–1032 (1993).

    Article  ADS  Google Scholar 

  11. Weiss, S., Ogletree, D. F., Botkin, D., Salmeron, M. & Chemla, D. S. Ultrafast scanning probe microscopy. Appl. Phys. Lett. 63, 2567–2569 (1993).

    Article  ADS  Google Scholar 

  12. Feldstein, M. J., Vöhringer, P., Wang, W. & Scherer, N. F. Femtosecond optical spectroscopy and scanning probe microscopy. J. Phys. Chem. 100, 4739–4748 (1996).

    Article  Google Scholar 

  13. Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020).

    Article  ADS  Google Scholar 

  14. Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    Article  ADS  Google Scholar 

  15. Rosławska, A. et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020).

    Article  Google Scholar 

  16. Merino, P., Große, C., Rosławska, A., Kuhnke, K. & Kern, K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown–Twiss scanning tunnelling microscopy. Nat. Commun. 6, 8461 (2015).

    Article  ADS  Google Scholar 

  17. Ast, C. R. et al. Sensing the quantum limit in scanning tunnelling spectroscopy. Nat. Commun. 7, 13009 (2016).

    Article  ADS  Google Scholar 

  18. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    Article  ADS  Google Scholar 

  19. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  20. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  21. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    Article  ADS  Google Scholar 

  22. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  23. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  ADS  Google Scholar 

  24. Gerstner, V., Knoll, A., Pfeiffer, W., Thon, A. & Gerber, G. Femtosecond laser assisted scanning tunneling microscopy. J. Appl. Phys. 88, 4851 (2000).

    Article  ADS  Google Scholar 

  25. Wu, S. W. & Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 82, 085444 (2010).

    Article  ADS  Google Scholar 

  26. Lee, J., Perdue, S. M., Whitmore, D. & Apkarian, V. A. Laser-induced scanning tunneling microscopy: linear excitation of the junction plasmon. J. Chem. Phys. 133, 104706 (2010).

    Article  ADS  Google Scholar 

  27. Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nat. Photonics 4, 869–874 (2010).

    Article  ADS  Google Scholar 

  28. Dey, S., Mirell, D., Perez, A. R., Lee, J. & Apkarian, V. A. Nonlinear femtosecond laser induced scanning tunneling microscopy. J. Chem. Phys. 138, 154202 (2013).

    Article  ADS  Google Scholar 

  29. Li, S., Chen, S., Li, J., Wu, R. & Ho, W. Joint space-time coherent vibration driven conformational transitions in a single molecule. Phys. Rev. Lett. 119, 176002 (2017).

    Article  ADS  Google Scholar 

  30. Kloth, P. & Wenderoth, M. From time-resolved atomic-scale imaging of individual donors to their cooperative dynamics. Sci. Adv. 3, e1601552 (2017).

    Article  ADS  Google Scholar 

  31. Gerstner, V., Thon, A. & Pfeiffer, W. Thermal effects in pulsed laser assisted scanning tunneling microscopy. J. Appl. Phys. 87, 2574–2580 (2000).

    Article  ADS  Google Scholar 

  32. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  ADS  Google Scholar 

  33. Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photonics 10, 762–765 (2016).

    Article  ADS  Google Scholar 

  34. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  35. Jelic, V. et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 13, 591–598 (2017).

    Article  Google Scholar 

  36. Müller, M., Martín Sabanés, N., Kampfrath, T. & Wolf, M. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction. ACS Photonics 7, 2046–2055 (2020).

    Article  Google Scholar 

  37. Kloth, P., Thias, T., Bunjes, O., von der Haar, J. & Wenderoth, M. A versatile implementation of pulsed optical excitation in scanning tunneling microscopy. Rev. Sci. Instrum. 87, 123702 (2016).

    Article  ADS  Google Scholar 

  38. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983).

    Article  ADS  Google Scholar 

  39. Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020).

    Article  ADS  Google Scholar 

  40. Schröder, B. et al. Controlling photocurrent channels in scanning tunneling microscopy. New J. Phys. 22, 033047 (2020).

    Article  ADS  Google Scholar 

  41. Khajetoorians, A. A., Wegner, D., Otte, A. F. & Swart, I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 1, 703–715 (2019).

    Article  Google Scholar 

  42. Chen, C., Bobisch, C. A. & Ho, W. Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains. Science 325, 981–985 (2009).

    Article  ADS  Google Scholar 

  43. Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).

    Article  ADS  Google Scholar 

  44. Yu, A. et al. Visualization of nanoplasmonic coupling to molecular orbital in light emission induced by tunneling electrons. Nano Lett. 18, 3076–3080 (2018).

    Article  ADS  Google Scholar 

  45. Zhang, L. et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 8, 580 (2017).

    Article  ADS  Google Scholar 

  46. Chen, G. et al. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett. 122, 177401 (2019).

    Article  ADS  Google Scholar 

  47. Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron-plasmon and electron-electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    Article  ADS  Google Scholar 

  48. Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2019).

    Article  ADS  Google Scholar 

  49. Kuhnke, K., Große, C., Merino, P. & Kern, K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117, 5174–5222 (2017).

    Article  Google Scholar 

  50. Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 8, 15225 (2017).

    Article  ADS  Google Scholar 

  51. Dong, Z. C. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat. Photonics 4, 50–54 (2009).

    Article  ADS  Google Scholar 

  52. Leon, C. C. et al. Single photon emission from a plasmonic light source driven by a local field-induced coulomb blockade. ACS Nano 14, 4216–4223 (2020).

    Article  Google Scholar 

  53. Merino, P. et al. Bimodal exciton-plasmon light sources controlled by local charge carrier injection. Sci. Adv. 4, eaap8349 (2018).

    Article  ADS  Google Scholar 

  54. Imada, H. et al. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett. 119, 013901 (2017).

    Article  ADS  Google Scholar 

  55. Kimura, K. et al. Selective triplet exciton formation in a single molecule. Nature 570, 210–213 (2019).

    Article  ADS  Google Scholar 

  56. Doppagne, B. et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020).

    Article  ADS  Google Scholar 

  57. Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018).

    Article  ADS  Google Scholar 

  58. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  Google Scholar 

  59. Luo, Y. et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett. 122, 233901 (2019).

    Article  ADS  Google Scholar 

  60. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).

    Article  ADS  Google Scholar 

  61. Cao, S. et al. Funneling energy at the molecular scale. Preprint at arXiv https://arxiv.org/abs/2101.01105 (2021).

  62. Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020).

    Article  ADS  Google Scholar 

  63. Chiang, N. et al. Molecular-resolution interrogation of a porphyrin monolayer by ultrahigh vacuum tip-enhanced raman and fluorescence spectroscopy. Nano Lett. 15, 4114–4120 (2015).

    Article  ADS  Google Scholar 

  64. Schultz, J. F., Li, S., Jiang, S. & Jiang, N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. J. Phys. Condens. Matter 32, 463001 (2020).

    Article  ADS  Google Scholar 

  65. Mahapatra, S., Li, L., Schultz, J. F. & Jiang, N. Tip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolution. J. Chem. Phys. 153, 010902 (2020).

    Article  Google Scholar 

  66. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  ADS  Google Scholar 

  67. Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. Nanoscale probing of adsorbed species by Tip-enhanced raman spectroscopy. Phys. Rev. Lett. 92, 096101 (2004).

    Article  ADS  Google Scholar 

  68. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  69. Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).

    Article  ADS  Google Scholar 

  70. Lee, J., Tallarida, N., Chen, X., Jensen, L. & Apkarian, V. A. Microscopy with a single-molecule scanning electrometer. Sci. Adv. 4, eaat5472 (2018).

    Article  ADS  Google Scholar 

  71. Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    Article  ADS  Google Scholar 

  72. Jaculbia, R. B. et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 15, 105–110 (2020).

    Article  ADS  Google Scholar 

  73. Mahapatra, S. et al. Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced raman mapping. Nano Lett. 19, 3267–3272 (2019).

    Article  ADS  Google Scholar 

  74. Liu, P., Chen, X., Ye, H. & Jensen, L. Resolving molecular structures with high-resolution tip-enhanced raman scattering images. ACS Nano 13, 9342–9351 (2019).

    Article  Google Scholar 

  75. Jiang, N. et al. Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett. 12, 5061–5067 (2012).

    Article  ADS  Google Scholar 

  76. Neuman, T., Esteban, R., Casanova, D., García-Vidal, F. J. & Aizpurua, J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 18, 2358–2364 (2018).

    Article  ADS  Google Scholar 

  77. Zhang, Y. et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Natl Sci. Rev. 6, 1169–1175 (2019).

    Article  Google Scholar 

  78. Chen, C., Chu, P., Bobisch, C. A., Mills, D. L. & Ho, W. Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett. 105, 217402 (2010).

    Article  ADS  Google Scholar 

  79. Lee, J., Perdue, S. M., Rodriguez Perez, A. & Apkarian, V. A. Vibronic motion with joint angstrom–femtosecond resolution observed through fano progressions recorded within one molecule. ACS Nano 8, 54–63 (2013).

    Article  Google Scholar 

  80. Doppagne, B. et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).

    Article  ADS  Google Scholar 

  81. Kröger, J., Doppagne, B., Scheurer, F. & Schull, G. Fano description of single-hydrocarbon fluorescence excited by a scanning tunneling microscope. Nano Lett. 18, 3407–3413 (2018).

    Article  ADS  Google Scholar 

  82. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  ADS  Google Scholar 

  83. Wang, Q., Schoenlein, R., Peteanu, L., Mathies, R. & Shank, C. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422–424 (1994).

    Article  ADS  Google Scholar 

  84. Tien, P. K. & Gordon, J. P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963).

    Article  ADS  Google Scholar 

  85. Roychowdhury, A., Dreyer, M., Anderson, J. R., Lobb, C. J. & Wellstood, F. C. Microwave photon-assisted incoherent Cooper-pair tunneling in a Josephson STM. Phys. Rev. Appl. 4, 034011 (2015).

    Article  ADS  Google Scholar 

  86. Kot, P. et al. Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals. Phys. Rev. B 101, 134507 (2020).

    Article  ADS  Google Scholar 

  87. Peters, O. et al. Resonant Andreev reflections probed by photon-assisted tunnelling at the atomic scale. Nat. Phys. 16, 1222–1226 (2020).

    Article  Google Scholar 

  88. Balatsky, A. V., Nishijima, M. & Manassen, Y. Electron spin resonance-scanning tunneling microscopy. Adv. Phys. 61, 117–152 (2012).

    Article  ADS  Google Scholar 

  89. Manassen, Y., Hamers, R. J., Demuth, J. E. & Castellano, A. J. Jr Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531–2534 (1989).

    Article  ADS  Google Scholar 

  90. Manassen, Y., Ter-Ovanesyan, E., Shachal, D. & Richter, S. Electron spin resonance–scanning tunneling microscopy experiments on thermally oxidized Si(111). Phys. Rev. B 48, 4887–4890 (1993).

    Article  ADS  Google Scholar 

  91. Manassen, Y., Mukhopadhyay, I. & Rao, N. R. Electron-spin-resonance STM on iron atoms in silicon. Phys. Rev. B 61, 16223–16228 (2000).

    Article  ADS  Google Scholar 

  92. Balatsky, A. V., Manassen, Y. & Salem, R. ESR-STM of a single precessing spin: detection of exchange-based spin noise. Phys. Rev. B 66, 195416 (2002).

    Article  ADS  Google Scholar 

  93. Durkan, C. & Welland, M. E. Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance. Appl. Phys. Lett. 80, 458–460 (2002).

    Article  ADS  Google Scholar 

  94. Müllegger, S. et al. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance. Phys. Rev. Lett. 113, 133001 (2014).

    Article  ADS  Google Scholar 

  95. Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 K. Phys. Rev. Res. 2, 013032 (2020).

    Article  Google Scholar 

  96. van Weerdenburg, W. M. J. et al. A scanning tunneling microscope capable of electron spin resonance and pump–probe spectroscopy at mK temperature and in vector magnetic field. Rev. Sci. Instrum. 92, 033906 (2021).

    Article  Google Scholar 

  97. Seifert, T. S. et al. Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope. Sci. Adv. 6, eabc5511 (2020).

    Article  ADS  Google Scholar 

  98. Natterer, F. D. et al. Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance. Rev. Sci. Instrum. 90, 013706 (2019).

    Article  ADS  Google Scholar 

  99. Natterer, F. D. Waveform-sequencing for scanning tunneling microscopy based pump-probe spectroscopy and pulsed-ESR. MethodsX 6, 1279–1285 (2019).

    Article  Google Scholar 

  100. Delgado, F. & Fernández-Rossier, J. Spin decoherence of magnetic atoms on surfaces. Prog. Surf. Sci. 92, 40–82 (2017).

    Article  ADS  Google Scholar 

  101. Willke, P. et al. Probing quantum coherence in single-atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).

    Article  ADS  Google Scholar 

  102. Shavit, G., Horovitz, B. & Goldstein, M. Generalized open quantum system approach for the electron paramagnetic resonance of magnetic atoms. Phys. Rev. B 99, 195433 (2019).

    Article  ADS  Google Scholar 

  103. Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science 366, 509–512 (2019).

    Article  ADS  Google Scholar 

  104. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  105. Pinto, D. et al. Readout and control of an endofullerene electronic spin. Nat. Commun. 11, 6405 (2020).

    Article  ADS  Google Scholar 

  106. Cujia, K. S., Boss, J. M., Herb, K., Zopes, J. & Degen, C. L. Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230–233 (2019).

    Article  Google Scholar 

  107. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    Article  ADS  Google Scholar 

  108. Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    Article  ADS  Google Scholar 

  109. Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from single atoms. Nat. Nanotechnol. 12, 420–424 (2017).

    Article  ADS  Google Scholar 

  110. Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

    Article  ADS  Google Scholar 

  111. Choi, T., Lutz, C. P. & Heinrich, A. J. Studies of magnetic dipolar interaction between individual atoms using ESR-STM. Curr. Appl. Phys. 17, 1513–1517 (2017).

    Article  ADS  Google Scholar 

  112. Steinbrecher, M. et al. Quantifying the interplay between fine structure and geometry of an individual molecule on a surface. Phys. Rev. B 103, 155405 (2021).

    Article  ADS  Google Scholar 

  113. Bae, Y. et al. Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).

    Article  ADS  Google Scholar 

  114. Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).

    Article  ADS  Google Scholar 

  115. Yang, K. et al. Electrically controlled nuclear polarization of individual atoms. Nat. Nanotechnol. 13, 1120–1125 (2018).

    Article  ADS  Google Scholar 

  116. Willke, P., Yang, K., Bae, Y., Heinrich, A. J. & Lutz, C. P. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 15, 1005–1010 (2019).

    Article  Google Scholar 

  117. Willke, P. et al. Tuning single-atom electron spin resonance in a vector magnetic field. Nano Lett. 19, 8201–8206 (2019).

    Article  ADS  Google Scholar 

  118. Reina Gálvez, J., Wolf, C., Delgado, F. & Lorente, N. Cotunneling mechanism for all-electrical electron spin resonance of single adsorbed atoms. Phys. Rev. B 100, 035411 (2019).

    Article  ADS  Google Scholar 

  119. Berggren, P. & Fransson, J. Electron paramagnetic resonance of single magnetic moment on a surface. Sci. Rep. 6, 25584 (2016).

    Article  ADS  Google Scholar 

  120. Lado, J. L., Ferrón, A. & Fernández-Rossier, J. Exchange mechanism for electron paramagnetic resonance of individual adatoms. Phys. Rev. B 96, 205420 (2017).

    Article  ADS  Google Scholar 

  121. Ferrón, A., Rodríguez, S. A., Gómez, S. S., Lado, J. L. & Fernández-Rossier, J. Single spin resonance driven by electric modulation of the g-factor anisotropy. Phys. Rev. Res. 1, 033185 (2019).

    Article  Google Scholar 

  122. Shakirov, A. M., Rubtsov, A. N. & Ribeiro, P. Spin transfer torque induced paramagnetic resonance. Phys. Rev. B 99, 054434 (2019).

    Article  ADS  Google Scholar 

  123. Devoret, M. H. et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions. Phys. Rev. Lett. 64, 1824–1827 (1990).

    Article  ADS  Google Scholar 

  124. Averin, D. V., Nazarov, Y. V. & Odintsov, A. A. Incoherent tunneling of the Cooper pairs and magnetic flux quanta in ultrasmall Josephson junctions. Phys. B Condens. Matter 165-166, 945–946 (1990).

    Article  ADS  Google Scholar 

  125. Jäck, B. et al. A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy. Appl. Phys. Lett. 106, 013109 (2015).

    Article  ADS  Google Scholar 

  126. Ingold, G.-L. & Nazarov, Y. V. in Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) 21–107 (Plenum, 1992).

  127. Ingold, G.-L., Grabert, H. & Eberhardt, U. Cooper-pair current through ultrasmall Josephson junctions. Phys. Rev. B 50, 395–402 (1994).

    Article  ADS  Google Scholar 

  128. Wilkins, R., Ben-Jacob, E. & Jaklevic, R. C. Scanning-tunneling-microscope observations of Coulomb blockade and oxide polarization in small metal droplets. Phys. Rev. Lett. 63, 801–804 (1989).

    Article  ADS  Google Scholar 

  129. Brun, C. et al. Dynamical coulomb blockade observed in nanosized electrical contacts. Phys. Rev. Lett. 108, 126802 (2012).

    Article  ADS  Google Scholar 

  130. Hong, I. P., Brun, C., Pivetta, M., Patthey, F. & Schneider, W.-D. Coulomb blockade phenomena observed in supported metallic nanoislands. Front. Phys. 1, 13 (2013).

    Article  Google Scholar 

  131. Senkpiel, J. et al. Dynamical coulomb blockade as a local probe for quantum transport. Phys. Rev. Lett. 124, 156803 (2020).

    Article  ADS  Google Scholar 

  132. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  MATH  Google Scholar 

  133. Jäck, B. et al. Critical Josephson current in the dynamical Coulomb blockade regime. Phys. Rev. B 93, 020504 (2016).

    Article  ADS  Google Scholar 

  134. Randeria, M. T., Feldman, B. E., Drozdov, I. K. & Yazdani, A. Scanning Josephson spectroscopy on the atomic scale. Phys. Rev. B 93, 161115 (2016).

    Article  ADS  Google Scholar 

  135. Huang, H. et al. Tunnelling dynamics between superconducting bound states at the atomic limit. Nat. Phys. 16, 1227–1231 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

C.R.A. acknowledges financial support through the ERC Consolidator Grant AbsoluteSpin (grant no. 681164).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rico Gutzler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Ying Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutzler, R., Garg, M., Ast, C.R. et al. Light–matter interaction at atomic scales. Nat Rev Phys 3, 441–453 (2021). https://doi.org/10.1038/s42254-021-00306-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00306-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing