Skip to main content
Log in

High-resolution probabilistic seismic hazard analysis of West Nusa Tenggara, Indonesia

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The interest to build a nuclear power plant in West Nusa Tenggara Province has caused a concern related to the seismic hazard. One of the challenges was that the existing low-resolution national seismic hazard map did not cover the entire islands of West Nusa Tenggara Province. In this paper, preliminary probabilistic seismic hazard analysis of West Nusa Tenggara was performed to complement the existing national seismic hazard map for West Nusa Tenggara. The analysis was carried out using OQ software based on the seismotectonic model and GMPE developed by PUSGEN. Similar seismotectonic model and seismic event trees were implemented using a finer grid spacing of 500–1000 m. The seismotectonic model included active shallow crustal, subduction interface, and background sources with a total number of 50 seismogenic sources and was calculated using 108 GMPE paths. Two hazard levels were considered, each representing 1% and 2% POE in a 100-year return period. A comparison to the existing national seismic hazard map on the PGA level has been presented in this study and yielded a 13–25% difference in the ground acceleration value. Spectral hazard maps representing the shorter period (0.2 s) showed a maximum ground acceleration value of more than 2 g, especially in the northern part of Sumbawa Island. Beyond the longer spectral period (1 s), ground acceleration gradually decreases to the level below the PGA level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a-value:

Gutenberg-Richter value, the cumulative number of earthquakes per year with magnitude greater than or equal to 0

b-value:

Gutenberg-Richter value

F(x):

Probability of exceedance of random magnitude M of an earthquake event exceeds a fixed level x

G-R:

Gutenberg-Richter

M:

Certain earthquake magnitude level, Mw

m max :

Earthquake maximum magnitude, Mw

m min :

Earthquake threshold magnitude, Mw

Mw:

Moment magnitude

Sa :

Spectral acceleration, g

RP:

Return period

T:

Spectral period, s

x :

Earthquake event exceeding level

β :

Independent scale parameter

BAPETEN:

Badan Pengawas Tenaga Nuklir (Nuclear Energy Regulatory Agency)

BATAN:

Badan Tenaga Nuklir Nasional (National Nuclear Energy Agency)

BMKG:

Badan Meteorologi, Klimatologi, dan Geofisika (Meteorological, Climatological and Geophysical Agency)

DSHA:

Deterministic Seismic Hazard Analysis

FMD:

Frequency-magnitude distribution

GMPE:

Ground Motion Prediction Equation

ISC-GEM:

International Seismological Centre-Global Earthquake Model

MLE:

Maximum Likelihood Estimation

PGA:

Peak Ground Acceleration, g

PSHA:

Probabilistic Seismic Hazard Analysis

POE:

Probability of Exceedance

PKSEN:

Pusat Kajian Sistem Energi Nuklir (Center for Nuclear Energy Assessment)

PUSGEN:

Pusat Studi Gempa Nasional (National Earthquake Study Center)

PUSKIM:

Pusat Litbang Perumahan dan Permukiman (Research Center for Human Settlement)

UHS:

Uniform Hazard Spectrum

References

  • Abrahamson N, Gregor N, Addo K (2015) BC hydro ground motion prediction equations for subduction earthquakes. Earthq Spectra 32:150202104017001. https://doi.org/10.1193/051712EQS188MR

  • Abrahamson NA, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24:67–97

  • Alhakim EE, Wicaksono AB, Suntoko H (2018) IDENTIFIKASI SEBARAN POTENSI DAERAH INTERES PLTN MENGGUNAKAN ANALISIS RASTER DI PROVINSI NUSA TENGGARA BARAT. In: Prosiding Seminar Nasional Infrastruktur Energi Nuklir 2018. Pusat Kajian Sistem Energi Nuklir, Yogyakarta, pp 237–242

  • Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to cascadia and other regions. Bull Seismol Soc Am 93:1703–1729

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for Eastern North America. Bull Seismol Soc Am 96:2181–2205

  • Baker JW (2008) An introduction to Probabilistic Seismic Hazard Analysis (PSHA). Stanfordedu:1–72

  • Bommer JJ, Strasser FO, Pagani M, Monelli D (2013) Quality assurance for logic-tree implementation in probabilistic seismic-hazard analysis for nuclear applications: a practical example. Seismol Res Lett 84:938–945. https://doi.org/10.1785/0220130088

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24:99–138

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24:139–171

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthq Spectra 30:1087–1115. https://doi.org/10.1193/062913EQS175M

  • Chang YW, Loh CH, Jean WY (2017) Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan. Terr Atmos Ocean Sci 28:815–831. https://doi.org/10.3319/TAO.2017.02.08.01

  • Chiou BS-J, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215

  • Chiou BS-J, Youngs RR (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30:1117–1153

  • Euchner F (2014) QuakePy. In: ETH-Zurich. https://quake.ethz.ch/quakepy/. Accessed 29 Jan 2020

  • Idriss I, Eeri M (2008) An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthq Spectra:24. https://doi.org/10.1193/1.2924362

  • Irsyam M, Hoedajanto D, Petersen MD et al (2008) Proposed seismic hazard maps of Sumatra and Java islands and microzonation study of Jakarta city, Indonesia. J Earth Syst Sci 117:865–878. https://doi.org/10.1007/s12040-008-0073-3

  • Istikomah MU, Sunardi B, Marzuki, Minardi S (2019) The analysis of seismotectonics, periodicity, and changing of quakes level in West Nusatenggara area based on 1973-2015 data. Indones Phys Rev 2:37–48. https://doi.org/10.29303/ipr.v2i1.20

  • Kijko A (1988) Maximum likelihood estimation of Gutenberg-Richter b parameter for uncertain magnitude values. Pure Appl Geophys PAGEOPH 127:573–579. https://doi.org/10.1007/BF00881745

  • Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654

  • Mahendra Taruna R, Haris Banyunegoro V, Daniarsyad G (2018) Peak ground acceleration at surface for Mataram city with a return period of 2500 years using probabilistic method. MATEC Web of Conferences, In, pp 1–10

  • Málek J, Vackář J (2019) Site-specific probabilistic seismic hazard of Prague (Czech Republic). J Seismol 23:1223–1232. https://doi.org/10.1007/s10950-019-09859-6

  • Monelli D, Pagani M, Weatherill G et al (2012) The hazard component of openquake: the calculation engine of the Global Earthquake Model. 15th World Conference Earthquake Engineering 8

  • Monelli D, Pagani M, Weatherill G et al (2014) Modeling distributed seismicity for probabilistic seismic-hazard analysis: Implementation and insights with the OpenQuake engine. Bull Seismol Soc Am 104:1636–1649. https://doi.org/10.1785/0120130309

  • Pagani M, Monelli D, Weatherill G et al (2014) OpenQuake Engine: An open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702. https://doi.org/10.1785/0220130087

  • Pailoplee S, Palasri C (2014) CU-PSHA: A MATLAB software for probabilistic seismic hazard analysis. J Earthq Tsunami 08:1450008. https://doi.org/10.1142/S1793431114500080

  • Petersen BM, Harmsen S, Mueller C, et al (2007) Documentation for the Southeast Asia seismic hazard maps

  • Pradjoko E, Kusuma T, Setyandito O et al (2015) The tsunami run-up assesment of 1977 Sumba Earthquake in Kuta, Center of Lombok, Indonesia. Procedia Earth Planet Sci 14:9–16. https://doi.org/10.1016/j.proeps.2015.07.079

  • Puspito NT, Shimazaki K (1995) Mantle structure and seismotectonics of the Sunda and Banda arcs. Tectonophysics 251:215–228. https://doi.org/10.1016/0040-1951(95)00063-1

  • Scasserra G, Stewart JP, Bazzurro P et al (2009) A comparison of nga ground-motion prediction equations to italian data. Bull Seismol Soc Am 99:2961–2978. https://doi.org/10.1785/0120080133

  • Silva V, Crowley H, Pagani M et al (2014) Development of the OpenQuake engine, the Global Earthquake Model open-source software for seismic risk assessment. Nat Hazards 72:1409–1427

  • Supartoyo HS, Wicaksono AB, Alhakim EE (2019) Analisis Morfotektonik dan Pemetaan Geologi pada Identifikasi Sesar Permukaan di daerah Plampang , Pulau Pulau Ngali dan Pulau Rakit, Provinsi Nusa Tenggara Barat. J Pengemb Energi Nukl 21:45–52

  • Tim Pusat Studi Gempa Nasional (2017) Peta Sumber Dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementrian Pekerjaan Umum dan Perumahan Rakyat, Bandung

  • Weatherill G, Danciu L, Crowley H (2013) Future directions for seismic input in european design codes in the context of the seismic hazard harmonisation in Europe (SHARE) Project. Vienna Conference on Earthquake Engineering and Structural Dynamics, In, pp 28–30

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

  • Widiyantoro S, Pesicek JD, Thurber CH (2011) Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. Geol Soc Spec Publ 355:139–155. https://doi.org/10.1144/SP355.7

  • Woessner J, Laurentiu D, Giardini D et al (2015) The 2013 european seismic hazard model: key components and results. Bull Earthq Eng 13:3553–3596. https://doi.org/10.1007/s10518-015-9795-1

  • Youngs RR, Chiou SJ, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68:58–73

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939–964

  • Yudi A, Santoso E, Kaluku A, et al (2018) Ulasan Guncangan Tanah Akibat Gempa Lombok Timur 05 Agustus 2018. Jakarta

  • Yuliastuti WAB (2019) Rupture aspect ratio Effect for probabilistic seismic. In: Prosiding Seminar Nasional Infrastruktur Energi Nuklir 2019. Center for Nuclear Energy System Assessment-BATAN, Pontianak, pp 157–162

  • Zhao JX, Zhang J, Asano A et al (2006) Attenuation relations of strong ground motion in japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913. https://doi.org/10.1785/0120050122

Download references

Acknowledgements

We are also thankful to Meteorological, Climatological and Geophysical Agency (Badan Meteorologi, Klimatologi, dan Geofisika, BMKG), PUSGEN, and Research Center for Human Settlement (Pusat Litbang Perumahan dan Permukiman, PUSKIM) for providing necessary data and analysis.

Funding

The funding for this research was provided by the annual budget of the Center for Nuclear Energy System Assessment (Pusat Kajian Sistem Energi Nuklir, PKSEN-BATAN) for the year 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yuliastuti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuliastuti, Y., Setiadipura, T., Wicaksono, A.B. et al. High-resolution probabilistic seismic hazard analysis of West Nusa Tenggara, Indonesia. J Seismol 25, 937–948 (2021). https://doi.org/10.1007/s10950-021-10000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-021-10000-9

Keywords

Navigation