Skip to main content

Advertisement

Log in

An Energy Stable Finite Element Scheme for the Three-Component Cahn–Hilliard-Type Model for Macromolecular Microsphere Composite Hydrogels

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we present and analyze a finite element numerical scheme for a three-component macromolecular microsphere composite (MMC) hydrogel model, which takes the form of a ternary Cahn–Hilliard-type equation with Flory–Huggins–deGennes energy potential. The numerical approach is based on a convex–concave decomposition of the energy functional in multi-phase space, in which the logarithmic and the nonlinear surface diffusion terms are treated implicitly, while the concave expansive linear terms are explicitly updated. A mass lumped finite element spatial approximation is applied, to ensure the positivity of the phase variables. In turn, a positivity-preserving property can be theoretically justified for the proposed fully discrete numerical scheme. In addition, unconditional energy stability is established as well, which comes from the convexity analysis. Several numerical simulations are carried out to verify the accuracy and positivity-preserving property of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67, 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer, F., Lapuerta, C.: Study of a three component Cahn–Hilliard flow model. ESAIM Math. Model. Numer. Anal. 40(4), 653–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM Math. Model. Numer. Anal. 45(4), 697–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Liu, Y., Wang, C., Wise, S.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85, 2231–2257 (2016)

    Article  MATH  Google Scholar 

  8. Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.: Energy stable numerical schemes for a ternary Cahn–Hilliard system. J. Sci. Comput. 84, 27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Wang, C., Wang, X., Wise, S.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031 (2019)

    MathSciNet  Google Scholar 

  10. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Curk, T., Dobnikar, J., Frenkel, D.: Rational design of molecularly imprinted polymers. Soft Matter 12(1), 35–44 (2016)

    Article  Google Scholar 

  13. Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal. 24, 1491–1514 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. deGennes, P .G.: Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 72, 4756–4763 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diegel, A., Wang, C., Wang, X., Wise, S.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diegel, A., Wang, C., Wise, S.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, L., Wang, C., Wise, S., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. J. Comput. Phys. (2021) Submitted and in review

  18. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn–Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28, 967–998 (2020)

    Article  MathSciNet  Google Scholar 

  20. Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003)

    Article  Google Scholar 

  21. Edlund, U., Ryberg, Y.Z., Albertsson, A.: Barrier films from renewable forestry waste. Biomacromolecules 11(9), 2532–2538 (2010)

    Article  Google Scholar 

  22. Elliott, C., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, W., Guan, Z., Lowengrub, J., Wang, C., Wise, S., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn–Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Flory, P.: Principles of Ploymer Chemistry. Cornell University Press, New York (1953)

    Google Scholar 

  25. Gong, Y., Zhao, J.: Energy-stable Runge–Kutta schemes for gradient flow models using the energy quadratization approach. Appl. Math. Lett. 94, 224–231 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gu, S., Zhang, H., Zhang, Z.: An energy-stable finite-difference scheme for the binary fluid-surfactant system. J. Comput. Phys. 270, 416–431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guan, Z., Lowengrub, J., Wang, C., Wise, S.: Second-order convex splitting schemes for nonlocal Cahn–Hilliard and Allen–Cahn equations. J. Comput. Phys. 277, 48–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guan, Z., Wang, C., Wise, S.: A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation. Numer. Math. 128, 377–406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14, 489–515 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. He, C., Jiao, K., Zhang, X., Xiang, M., Li, Z., Wang, H.: Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles. Soft Matter 7(6), 2943–2952 (2011)

    Article  Google Scholar 

  31. Huang, T., Xu, H., Jiao, K., Zhu, L., Brown, H.R., Wang, H.: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19(12), 1622–1626 (2007)

    Article  Google Scholar 

  32. Ji, G., Yang, Y., Zhang, H.: Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels. East Asian J. Appl. Math. 11(1), 93–118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, J.A., Turro, N.J., Koberstein, J.T., Mark, J.E.: Some hydrogels having novel molecular structures. Progr. Polym. Sci. 35(3), 332–337 (2010)

    Article  Google Scholar 

  34. Li, X., Ji, G., Zhang, H.: Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation. J. Comput. Phys. 283, 81–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, X., Qiao, Z., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn–Hilliard equation. Sci. China Math. 59(9), 1815–1834 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liao, D., Zhang, H., Zhang, Z.: Energy stable numerical method for the TDGL equation with the reticular free energy in hydrogel. J. Comput. Math. 35(1), 37–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction–diffusion equations with detailed balance. J. Comput. Phys. 436, 110253 (2021)

    Article  MathSciNet  Google Scholar 

  38. Liu, C., Wang, C., Wise, C., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comput. (2021). Accepted and in press arXiv:2009.08076

  39. Liu, Y., Chen, W., Wang, C., Wise, S.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135, 679–709 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Qian, Y., Wang, C., Zhou, S.: A positive and energy stable numerical scheme for the Poisson–Nernst–Planck–Cahn–Hilliard equations with steric interactions. J. Comput. Phys. 426, 109908 (2021)

    Article  MathSciNet  Google Scholar 

  42. Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Thomèe, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  44. Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, C., Wise, S.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, X., Wang, H.: Advances in the fabrication of hydrogels with well-defined structure and high mechanical strength. Polym. Bull. 3(107), 1–6 (2008)

    Article  Google Scholar 

  47. Wise, S.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wise, S.M., Wang, C., Lowengrub, J.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xiao, X., Chu, L., Chen, W., Zhu, J.: Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer 46(9), 3199–3209 (2005)

    Article  Google Scholar 

  50. Xu, Z., Yang, X., Zhang, H., Xie, Z.: Efficient and linear schemes for anisotropic Cahn–Hilliard model using the stabilized-invariant energy quadratization (S-IEQ) approach. Comput. Phys. Commun. 238, 36–49 (2019)

    Article  MathSciNet  Google Scholar 

  51. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    Article  MathSciNet  Google Scholar 

  52. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2019)

    Article  MathSciNet  Google Scholar 

  54. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Model. Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhai, D., Zhang, H.: Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel. Soft Matter 9(3), 820–825 (2013)

    Article  Google Scholar 

  56. Zhang, J., Wang, C., Wise, S., Zhang, Z.: Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model. SIAM J. Sci. Comput. 43(2), A1248–A1272 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

W.B. Chen is partially supported by the National Natural Science Foundation of China (NSFC) 12071090, Shanghai Science and technology research program 19JC1420101 and a 111 project B08018. Z.R. Zhang is partially supported by NSFC No.11871105 and Science Challenge Project No. TZ2018002. C. Wang is partially supported by the NSF DMS-2012669, S.M. Wise is partially supported by the NSF NSF-DMS 1719854, DMS-2012634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Chen, W., Wang, C. et al. An Energy Stable Finite Element Scheme for the Three-Component Cahn–Hilliard-Type Model for Macromolecular Microsphere Composite Hydrogels. J Sci Comput 87, 78 (2021). https://doi.org/10.1007/s10915-021-01508-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01508-w

Keywords

Mathematics Subject Classification

Navigation