Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 2, 2021

Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae)

  • Layane Valéria Amorim , Davyson de Lima Moreira , Michel Muálem de Moraes Alves , Ygor Jessé Ramos , Enoque Pereira Costa Sobrinho , Daniel Dias Rufino Arcanjo ORCID logo , Alyne Rodrigues de Araújo , José Roberto de Souza de Almeida Leite ORCID logo , Francisco das Chagas Pereira de Andrade , Anderson Nogueira Mendes ORCID logo EMAIL logo and Fernando Aécio de Amorim Carvalho

Abstract

Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 μg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 μg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.


Corresponding author: Anderson Nogueira Mendes, Departamento de Biofísica e Fisiologia, Laboratory of Innovation on Science and Technology, Federal University of Piauí, Campos universitário Ministro Petrônio Portela, Bairro Ininga, Teresina, Piauí, Brazil, E-mail:

Award Identifier / Grant number: PROEP 407845/2017-8

Award Identifier / Grant number: research grant and resources for project maintenan

Award Identifier / Grant number: research grants

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (PROEP 407845/2017-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (research grants), Universidade Federal do Piauí – UFPI (research grant and resources for project maintenance).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Burza, S, Croft, SL, Boelaert, M. Leishmaniasis. Lancet 2018;392:951–70. Available from: http://www.sciencedirect.com/science/article/pii/S0140673618312042.10.1016/S0140-6736(18)31204-2Search in Google Scholar

2. Palatnik-de-Sousa, CB, Nico, D. The delay in the licensing of Protozoal vaccines: a comparative history. Front Immunol 2020;11:204. Available from: https://pubmed.ncbi.nlm.nih.gov/32210953.10.3389/fimmu.2020.00204Search in Google Scholar PubMed PubMed Central

3. Ponte-Sucre, A, Gamarro, F, Dujardin, J-C, Barrett, MP, López-Vélez, R, García-Hernández, R, et al.. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Trop Dis 2017;11:e0006052.Available from: https://pubmed.ncbi.nlm.nih.gov/29240765.10.1371/journal.pntd.0006052Search in Google Scholar PubMed PubMed Central

4. Viana Nunes, AM, das Chagas Pereira de Andrade, F, Filgueiras, LA, de Carvalho Maia, OA, Cunha, RLOR, Rodezno, SVA, et al.. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: a possible control for canine visceral leishmaniasis? Environ Toxicol Pharmacol 2020;80:103470. Available from: http://www.sciencedirect.com/science/article/pii/S1382668920301460.10.1016/j.etap.2020.103470Search in Google Scholar PubMed

5. Herrera, G, Barragán, N, Luna, N, Martínez, D, De Martino, F, Medina, J, et al.. An interactive database of Leishmania species distribution in the Americas. Sci Data 2020;7:110. Available from: https://doi.org/10.1038/s41597-020-0451-5.10.1038/s41597-020-0451-5Search in Google Scholar PubMed PubMed Central

6. Franssen, SU, Durrant, C, Stark, O, Moser, B, Downing, T, Imamura, H, et al.. Global genome diversity of the Leishmania donovani complex. Elife 2020;9:e51243. Available from: https://pubmed.ncbi.nlm.nih.gov/32209228.10.7554/eLife.51243Search in Google Scholar PubMed PubMed Central

7. Vieira-Araujo, FM, Macedo Rondon, FC, Pinto Vieira, IG, Pereira Mendes, FN, Carneiro de Freitas, JC, Maia de Morais, S. Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Exp Parasitol 2018;188:79–82. https://doi.org/10.1016/j.exppara.2018.04.001.Search in Google Scholar

8. Berenguer, D, Sosa, L, Alcover, M, Sessa, M, Halbaut, L, Guillen, C, et al.. Development and characterization of a semi-solid dosage form of meglumine antimoniate for topical treatment of cutaneous leishmaniasis. Pharmaceutics 2019;11:613. https://doi.org/10.3390/pharmaceutics11110613.Search in Google Scholar

9. Dar, MJ, Khalid, S, Varikuti, S, Satoskar, AR, Khan, GM. Nano-elastic liposomes as multidrug carrier of sodium stibogluconate and ketoconazole: a potential new approach for the topical treatment of cutaneous Leishmaniasis. Eur J Pharmaceut Sci 2020;145:105256. https://doi.org/10.1016/j.ejps.2020.105256.Search in Google Scholar

10. Patino, LH, Muskus, C, Ramirez, JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites Vectors 2019;12:348. https://doi.org/10.1186/s13071-019-3603-8.Search in Google Scholar

11. Rauf, MK, Shaheen, U, Asghar, F, Badshah, A, Nadhman, A, Azam, S, et al.. Antileishmanial, DNA interaction, and docking studies of some ferrocene-based heteroleptic pentavalent antimonials. Arch Pharm (Weinheim) 2016;349:50–62. https://doi.org/10.1002/ardp.201500312.Search in Google Scholar

12. Soto, J, Soto, P, Ajata, A, Rivero, D, Luque, C, Tintaya, C, et al.. Miltefosine combined with intralesional pentamidine for leishmania braziliensis cutaneous leishmaniasis in Bolivia. Am J Trop Med Hyg 2018;99:1153–5. https://doi.org/10.4269/ajtmh.18-0183.Search in Google Scholar

13. Voak, AA, Standing, JF, Sepulveda, N, Harris, A, Croft, SL, Seifert, K. Pharmacodynamics and cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary macrophages. J Antimicrob Chemother 2018;73:1314–23. https://doi.org/10.1093/jac/dky014.Search in Google Scholar

14. Borsari, C, Jimenez-Anton, MD, Eick, J, Bifeld, E, Torrado, JJ, Olias-Molero, AI, et al.. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur J Med Chem 2019;183:111676. https://doi.org/10.1016/j.ejmech.2019.111676.Search in Google Scholar

15. Antwi, CA, Amisigo, CM, Adjimani, JP, Gwira, TM. In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Neglected Trop Dis 2019;13:e0007206. https://doi.org/10.1371/journal.pntd.0007206.Search in Google Scholar

16. Osei, E, Kwain, S, Mawuli, GT, Anang, AK, Owusu, KB-A, Camas, M, et al.. Paenidigyamycin A, potent antiparasitic imidazole alkaloid from the Ghanaian paenibacillus sp. DE2SH Mar Drugs 2018;17:9. https://doi.org/10.3390/md17010009.Search in Google Scholar

17. de Oliveira, DP, de Almeida, L, Marques, MJ, de Carvalho, RR, Dias, ALT, da Silva, GA, et al.. Exploring the bioactivity potential of Leonotis nepetifolia: phytochemical composition, antimicrobial and antileishmanial activities of extracts from different anatomical parts. Nat Prod Res 2019;6:1–6. https://doi.org/10.1080/14786419.2019.1686367.Search in Google Scholar

18. de Paula, RC, da Silva, SM, Faria, KF, Frezard, F, Moreira, CP de S, Foubert, K, et al.. In vitro antileishmanial activity of leaf and stem extracts of seven Brazilian plant species. J Ethnopharmacol 2019;232:155–64. https://doi.org/10.1016/j.jep.2018.12.026.Search in Google Scholar

19. Chibli, LA, Schmidt, TJ, Nonato, MC, Calil, FA, Da Costa, FB. Natural products as inhibitors of Leishmania major dihydroorotate dehydrogenase. Eur J Med Chem 2018;157:852–66. https://doi.org/10.1016/j.ejmech.2018.08.033.Search in Google Scholar

20. Macedo, CG, Fonseca, MYN, Caldeira, AD, Castro, SP, Pacienza-Lima, W, Borsodi, MPG, et al.. Leishmanicidal activity of piper marginatum Jacq. From santarem-PA against leishmania amazonensis. Exp Parasitol 2020;210:107847. https://doi.org/10.1016/j.exppara.2020.107847.Search in Google Scholar

21. Flores, N, Ticona, JC, Bilbao-Ramos, P, Dea-Ayuela, MA, Ruiz Macedo, JC, Bazzocchi, IL, et al.. An unprecedented chlorine-containing piperamide from Piper pseudoarboreum as potential leishmanicidal agent. Fitoterapia 2019;134:340–5. https://doi.org/10.1016/j.fitote.2019.03.004.Search in Google Scholar

22. Oliveira, FA de S, Passarini, GM, Medeiros, DSS de, Santos, AP de A, Fialho, SN, Gouveia, A de J, et al.. Antiplasmodial and antileishmanial activities of compounds from Piper tuberculatum Jacq fruits. Rev Soc Bras Med Trop 2018;51:382–6. https://doi.org/10.1590/0037-8682-0309-2017.Search in Google Scholar

23. Varela, MT, Lima, ML, Galuppo, MK, Tempone, AG, de Oliveira, A, Lago, JHG, et al.. New alkenyl derivative from Piper malacophyllum and analogues: antiparasitic activity against Trypanosoma cruzi and Leishmania infantum. England: Chemical biology & drug design; 2017, vol 90:1007–11 pp.10.1111/cbdd.12986Search in Google Scholar PubMed

24. da Silva, JK, da Trindade, R, Alves, NS, Figueiredo, PL, Maia, JGS, Setzer, WN. Essential oils from neotropical piper species and their biological activities. Int J Mol Sci 2017;18:2571. https://doi.org/10.3390/ijms18122571.Search in Google Scholar

25. Bernuci, KZ, Iwanaga, CC, Fernandez-Andrade, CMM, Lorenzetti, FB, Torres-Santos, EC, Faioes, VDS, et al.. Evaluation of chemical composition and antileishmanial and antituberculosis activities of essential oils of piper species. Molecules 2016;21:1698. https://doi.org/10.3390/molecules21121698.Search in Google Scholar

26. Mgbeahuruike, EE, Yrjönen, T, Vuorela, H, Holm, Y. Bioactive compounds from medicinal plants: focus on Piper species. South African J Bot 2017;112:54–69. Available from: http://www.sciencedirect.com/science/article/pii/S0254629916340637.10.1016/j.sajb.2017.05.007Search in Google Scholar

27. Marques, AM, Barreto, ALS, Batista, EM, Curvelo, JA da R, Velozo, LSM, Moreira, D de L, et al.. Chemistry and biological activity of essential oils from Piper claussenianum (Piperaceae). Nat Prod Commun 2010;5:1837–40. https://doi.org/10.1177/1934578x1000501131.Search in Google Scholar

28. Moreira, D de L, de Paiva, RA, Marques, AM, Borges, RM, Barreto, ALS, Curvelo, JA da R, et al.. Bioactive neolignans from the leaves of piper rivinoides Kunth (Piperaceae). Record Nat Prod 2016;10:472–84.Search in Google Scholar

29. Mendes, AN, Filgueiras, LA, Siqueira, MRP, Barbosa, GM, Holandino, C, Moreira, D de L, et al.. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. Int J Nanomed 2017;12:8363–73. Available from: https://www.dovepress.com/encapsulation-of-piper-cabralanum-piperaceae-nonpolar-extract-in-polym-peer-reviewed-article-IJN.10.2147/IJN.S134756Search in Google Scholar PubMed PubMed Central

30. Moreira, DL, Fonseca, VM, Bhering, CA, Cunha-Junior, EF, Canto-Cavalheiro, MM, Torres-Santos, EC, et al.. Estudo Químico e da Atividade Leishmanicida de Frações de Piper cabralanum C.DC. (Piperaceae). Rev Fitos 2010;5:92–8.10.32712/2446-4775.2010.108Search in Google Scholar

31. Eaton, P, Bittencourt, CR, Costa Silva, V, Véras, LMC, Costa, CHN, Feio, MJ, et al.. Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells. Nanomed Nanotechnol, Biol Med 2014;10:483–90. Available from: http://www.sciencedirect.com/science/article/pii/S1549963413004784.10.1016/j.nano.2013.09.003Search in Google Scholar PubMed

32. Hodon, J, Borkova, L, Pokorny, J, Kazakova, A, Urban, M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem 2019;182:111653. https://doi.org/10.1016/j.ejmech.2019.111653.Search in Google Scholar

33. Mori-Yasumoto, K, Hashimoto, Y, Agatsuma, Y, Fuchino, H, Yasumoto, K, Shirota, O, et al.. Leishmanicidal phenolic compounds derived from Dalbergia cultrata. Nat Prod Res 2020;25:1–9. https://doi.org/10.1080/14786419.2020.1744140.Search in Google Scholar

34. Srivastava, A, Chandra, D. Alkaloids and leishmania donovani UDP-galactopyarnosemutase: a novel approach in drug designing against visceral leishmaniasis. Infect Disord Drug Targets 2018;18:145–55. https://doi.org/10.2174/1871526517666170606104003.Search in Google Scholar

35. Aoki, JI, Muxel, SM, Zampieri, RA, Müller, KE, Nerland, AH, Floeter-Winter, LM. Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Sci Rep 2019;9:19841. https://doi.org/10.1038/s41598-019-56305-1.Search in Google Scholar

36. Kumar, GA, Karmakar, J, Mandal, C, Chattopadhyay, A. Leishmania donovani internalizes into host cells via caveolin-mediated endocytosis. Sci Rep 2019;9:12636. https://doi.org/10.1038/s41598-019-49007-1.Search in Google Scholar

37. Price, JV, Vance, RE. The macrophage paradox. Immunity 2014;41:685–93. Available from: http://www.sciencedirect.com/science/article/pii/S1074761314003914.10.1016/j.immuni.2014.10.015Search in Google Scholar PubMed

38. Naderer, T, McConville, MJ. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 2008;10:301–8. https://doi.org/10.1111/j.1462-5822.2007.01096.x.Search in Google Scholar

39. Tomiotto-Pellissier, F, Bortoleti BT da, S, Assolini, JP, Goncalves, MD, Carloto, ACM, Miranda-Sapla, MM, et al.. Macrophage polarization in leishmaniasis: broadening horizons. Front Immunol 2018;9:2529. https://doi.org/10.3389/fimmu.2018.02529.Search in Google Scholar

40. Banu, SS, Meyer, W, Ferreira-Paim, K, Wang, Q, Kuhls, K, Cupolillo, E, et al.. A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. Int J Parasitol 2019;49:555–67. https://doi.org/10.1016/j.ijpara.2019.02.010.Search in Google Scholar

41. de Sousa Araujo, PS, de Oliveira, SSC, d’Avila-Levy, CM, Dos Santos, ALS, Branquinha, MH. Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170. Parasitol Res 2018;117:2085–94. https://doi.org/10.1007/s00436-018-5894-7.Search in Google Scholar

42. Morais, TR, Conserva, GAA, Varela, MT, Costa-Silva, TA, Thevenard, F, Ponci, V, et al.. Improving the drug-likeness of inspiring natural products - evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A. Sci Rep 2020;10:5467. https://doi.org/10.1038/s41598-020-62352-w.Search in Google Scholar

43. Shapouri-Moghaddam, A, Mohammadian, S, Vazini, H, Taghadosi, M, Esmaeili, S-A, Mardani, F, et al.. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018;233:6425–40. https://doi.org/10.1002/jcp.26429.Search in Google Scholar

44. Climaco-Arvizu, S, Domínguez-Acosta, O, Cabañas-Cortés, MA, Rodríguez-Sosa, M, Gonzalez, FJ, Vega, L, et al.. Aryl hydrocarbon receptor influences nitric oxide and arginine production and alters M1/M2 macrophage polarization. Life Sci 2016;155:76–84. Available from: https://pubmed.ncbi.nlm.nih.gov/27153778.10.1016/j.lfs.2016.05.001Search in Google Scholar PubMed PubMed Central

45. Islamuddin, M, Chouhan, G, Farooque, A, Dwarakanath, BS, Sahal, D, Afrin, F. Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Neglected Trop Dis 2015;9:e3321. https://doi.org/10.1371/journal.pntd.0003321.Search in Google Scholar

46. Rostamian, M, Niknam, HM. Leishmania tropica: what we know from its experimental models. Adv Parasitol 2019;104:1–38. https://doi.org/10.1016/bs.apar.2018.11.001.Search in Google Scholar

47. Davenport, BJ, Martin, CG, Beverley, SM, Orlicky, DJ, Vazquez-Torres, A, Morrison, TE. SODB1 is essential for Leishmania major infection of macrophages and pathogenesis in mice. PLoS Neglected Trop Dis 2018;12:e0006921.10.1371/journal.pntd.0006921Search in Google Scholar PubMed PubMed Central

48. Lima, JGB, de Freitas Vinhas, C, Gomes, IN, Azevedo, CM, dos Santos, RR, Vannier-Santos, MA, et al.. Phagocytosis is inhibited by autophagic induction in murine macrophages. Biochem Biophys Res Commun 2011;405:604–9. https://doi.org/10.1016/j.bbrc.2011.01.076.Search in Google Scholar

49. Majumder, N, Ganguly, S, Ghosh, AK, Kundu, S, Banerjee, A, Saha, S. Chlorogenic acid acts upon Leishmania donovani arresting cell cycle and modulating cytokines and nitric oxide in vitro. Parasite Immunol 2020;42:e12719. https://doi.org/10.1111/pim.12719.Search in Google Scholar

50. Reza, S, Hasan, NA, Maryam, NF, Fahimeh, B, Ghahremani, A, GholamReza, H, et al.. Cytokine profile and nitric oxide levels in macrophages exposed to Leishmania infantum FML. Exp Parasitol 2019;203:1–7. https://doi.org/10.1016/j.exppara.2019.05.004.Search in Google Scholar

51. Olekhnovitch, R, Bousso, P. Induction, propagation, and activity of host nitric oxide: lessons from leishmania infection. Trends Parasitol 2015;31:653–64. https://doi.org/10.1016/j.pt.2015.08.001.Search in Google Scholar

52. Muxel, SM, Laranjeira-Silva, MF, Zampieri, RA, Floeter-Winter, LM. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci Rep 2017;7:44141. https://doi.org/10.1038/srep44141.Search in Google Scholar

53. Acuna, SM, Aoki, JI, Laranjeira-Silva, MF, Zampieri, RA, Fernandes, JCR, Muxel, SM, et al.. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis. PloS One 2017;12:e0187186. https://doi.org/10.1371/journal.pone.0187186.Search in Google Scholar

54. Santos-Pereira, S, Cardoso, FO, Calabrese, KS, Zaverucha do Valle, T. Leishmania amazonensis resistance in murine macrophages: analysis of possible mechanisms. PloS One 2019;14:e0226837. https://doi.org/10.1371/journal.pone.0226837.Search in Google Scholar

55. Li, Y, Jiang, Y, Chu, Q, Zheng, X. Radix Tetrastigma extract from different origins protect RAW264.7 macrophages against LPS-induced inflammation. J Food Sci 2020;85:1586–95. https://doi.org/10.1111/1750-3841.15113.Search in Google Scholar

56. Siegel, JM, Schilly, KM, Wijesinghe, MB, Caruso, G, Fresta, CG, Lunte, SM. Optimization of a microchip electrophoresis method with electrochemical detection for the determination of nitrite in macrophage cells as an indicator of nitric oxide production. Anal Methods 2018;11:148–56. Available from: https://pubmed.ncbi.nlm.nih.gov/31579404.10.1039/C8AY02014KSearch in Google Scholar PubMed PubMed Central

57. Pei, Y, Cui, F, Du, X, Shang, G, Xiao, W, Yang, X, et al.. Antioxidative nanofullerol inhibits macrophage activation and development of osteoarthritis in rats. Int J Nanomed 2019;14:4145–55. https://doi.org/10.2147/ijn.s202466.Search in Google Scholar

58. Iyengar, R, Stuehr, DJ, Marletta, MA. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A 1987;84:6369–73. Available from: https://pubmed.ncbi.nlm.nih.gov/2819872.10.1073/pnas.84.18.6369Search in Google Scholar PubMed PubMed Central

59. Torres-Santos, EC, Lopes, D, Oliveira, RR, Carauta, JPP, Falcao, CAB, Kaplan, MAC, et al.. Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine 2004;11:114–20. https://doi.org/10.1078/0944-7113-00381.Search in Google Scholar

60. Fonseca, ACC da, de Queiroz, LN, Sales Felisberto, J, Jessé Ramos, Y, Mesquita Marques, A, Wermelinger, GF, et al.. Cytotoxic effect of pure compounds from Piper rivinoides Kunth against oral squamous cell carcinoma. Nat Prod Res 2020;14:1–5. https://doi.org/10.1080/14786419.2020.1831494.Search in Google Scholar

61. Macedo, AL, da Silva, DPD, Moreira, DL, de Queiroz, LN, Vasconcelos, TRA, Araujo, GF, et al.. Cytotoxicity and selectiveness of Brazilian Piper species towards oral carcinoma cells. Biomed Pharmacother 2019;110:342–52. Available from: http://www.sciencedirect.com/science/article/pii/S0753332218343348.10.1016/j.biopha.2018.11.129Search in Google Scholar PubMed

62. Macedo, AL, Dos Santos, TCC, Valverde, AL, Moreira, D de L, Vasconcelos, TRA. An overview of neolignans of the genus piper L.: isolation methods and biological activities. Mini Rev Med Chem 2017;17:693–720. https://doi.org/10.2174/1389557516666161130094826.Search in Google Scholar

63. Kim, S-K, Karadeniz, F. Biological importance and applications of squalene and squalane. Adv Food Nutr Res 2012;65:223–33. https://doi.org/10.1016/b978-0-12-416003-3.00014-7.Search in Google Scholar

64. Ferreira, MGPR, Kayano, AM, Silva-Jardim, I, Silva, TO da, Zuliani, JP, Facundo, VA, et al.. Antileishmanial activity of 3-(3,4,5-trimethoxyphenyl) propanoic acid purified from Amazonian Piper tuberculatum Jacq., Piperaceae, fruits. Curitiba: Revista Brasileira de Farmacognosia. scielo; 2010, 20:1003–6 pp.10.1590/S0102-695X2010005000033Search in Google Scholar

65. Royo, VA, Santos, FF, Souza, VA, Pereira, AC, Da Silva, R, Vinhólis, AHC, et al.. Biological activity evaluation of dibenzilbutirolactones lignans derivatives against Leishmania braziliensis. Curitiba: Revista Brasileira de Farmacognosia. scielo; 2003, 13:18–21 pp.10.1590/S0102-695X2003000400007Search in Google Scholar

66. Olias-Molero, AI, Jimenez-Anton, MD, Biedermann, D, Corral, MJ, Alunda, JM. In-vitro activity of silybin and related flavonolignans against leishmania infantum and L. Donovani. Molecules 2018;23:1560. https://doi.org/10.3390/molecules23071560.Search in Google Scholar

67. Fragiadaki, I, Katogiritis, A, Calogeropoulou, T, Bruckner, H, Scoulica, E. Synergistic combination of alkylphosphocholines with peptaibols in targeting Leishmania infantum in vitro. Int J Parasitol Drugs drug Resist 2018;8:194–202. https://doi.org/10.1016/j.ijpddr.2018.03.005.Search in Google Scholar

68. Ferreira, FM, Castro, RAO, Batista, MA, Rossi, FMO, Silveira-Lemos, D, Frezard, F, et al.. Association of water extract of green propolis and liposomal meglumine antimoniate in the treatment of experimental visceral leishmaniasis. Parasitol Res 2014;113:533–43. https://doi.org/10.1007/s00436-013-3685-8.Search in Google Scholar


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2020-0284).


Received: 2020-11-24
Accepted: 2021-02-06
Published Online: 2021-03-02
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2020-0284/html
Scroll to top button