Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 15, 2021

Synthesis of selective biodegradable amidoxime chitosan for absorption of Th(IV) and U(VI) ions in solution

  • Jiaju Ma EMAIL logo , Zhiwei Lei , Yun Zhou , Tianhao Dong , Peizhuo Hu , Guojian Duan and Tonghuan Liu
From the journal Radiochimica Acta

Abstract

Radionuclide extraction from wastewater is a long-term process, in which the study on the reuse and decomposition of adsorbents provides the ability to complete the post-treatment after adsorption. Herein, A novel biodegradable amidoxime chitosan has been synthesized through one-step without crosslinking agent and characterized by FT-IR, SEM, XPS, TGA and element analysis. The batch adsorption experiments of U(VI) and Th(IV) on AO-CTS adsorbent were studied and maximum adsorption of U(VI) and Th(IV) were 97 and 56 mg/g, respectively. The U(VI) and Th(Ⅳ) can be effectively desorbed from the AO-CTS materials at low acidity, The AO-CTS can be reused 6 times without reducing absorbency for U(VI) and Th(Ⅳ). When finish the adsorption process, the AO-CTS can be degraded by lysozyme at room temperature, there were no toxic or harmful substances are produced.


Corresponding author: Tonghuan Liu,Radiochemistry Laboratory and Key Laboratory of Special Function Material and Structure Design Dinistry Eduction, School of Nuclear Science and Technology, Lanzhou University, Lanzhou730000, China, E-mail:

Award Identifier / Grant number: 21762001 and 22076071

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: lzujbky-2020-kb06

Funding source: Key scientific research bidding projects of Gansu University of Chinese Medicine

Award Identifier / Grant number: 2305137401

  1. Author contributions: Tonghuan Liu and Guojian Duan conceived and designed the experiments; Zhiwei Lei and Jiaju Ma performed the experiments; Lijuan Qian, Tonghuan Liu and Peizhuo Hu analyzed the data; Tonghuan Liu, Guojian Duan and Yun Zhou contributed reagents/materials/analysis tools; Tonghuan Liu writing—original draft preparation; Guojian Duan literature search. All authors have read and agreed to the published version of the manuscript.

  2. Research funding: This research was funded by the National Nature Science Foundation of China (No. 21762001 and 22076071), Fundamental Research Funds for the Central Universities (lzujbky-2020-kb06) and 2015 Key scientific research bidding projects of Gansu University of Chinese Medicine (2305137401).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kadam, R. B., Mali, G. G., Mohite, B. S. Analytical application of poly [dibenzo-18-crown-6] for chromatographic separation of thorium (IV) from uranium (VI) and other elements in glycine medium. J. Radioanal. Nucl. Chem. 2013, 295, 501–511; https://doi.org/10.1007/s10967-012-1859-y.Search in Google Scholar

2. Dauner, J., Workman, S. Comparison of TEVA® resin beads, PAN fibers, and ePTFE membranes as a solid support for Aliquat-336 in immobilized liquid extraction chromatography for separation of actinides. J. Radioanal. Nucl. Chem. 2012, 292, 967–972; https://doi.org/10.1007/s10967-012-1676-3.Search in Google Scholar

3. Kapnisti, M., Noli, F., Misaelides, P., Vourlias, G., Karfaridis, D., Hatzidimitriou, A. Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem. Eng. J. 2018, 342, 184–195; https://doi.org/10.1016/j.cej.2018.02.066.Search in Google Scholar

4. Lehtonen, J., Hassinen, J., Kumar, A. A., Johansson, L. S., Mäenpää, R., Pahimanolis, N., Pradeep, T., Ikkala, O., Rojas, O. J. Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 2020, 27, 10719–10732, https://doi.org/10.1007/s10570-020-02971-8.Search in Google Scholar

5. Sokolov, F., Fukuda, K., Nawada, H. P. Thorium fuel cycle-Potential benefits and challenges. IAEA-Tecdoc 2005, 1450.Search in Google Scholar

6. Cavia, J. T., Schubert, A., Van Uffelen, P., Pöml, P., Bremier, S., Somers, J., Macian-Juan, R. The TRANSURANUS burn-up model for thorium fuels under LWR conditions. Nucl. Eng. Des. Fusion 2018, 326, 311–319. https://doi.org/10.1016/j.nucengdes.2017.11.021.Search in Google Scholar

7. Liu, W., Dai, X., Wang, Y., Song, L., Zhang, L., Zhang, D., Chai, Z. Ratiometric monitoring of thorium contamination in natural water using a dual-emission luminescent europium organic framework. Energy Environ. Sci. 2018, 53, 332–341; https://doi.org/10.1021/acs.est.8b04728.Search in Google Scholar

8. Kumar, A., Ali, M., Ningthoujam, R. S., Gaikwad, P., Kumar, M., Nath, B. B., Pandey, B. N. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology. J. Hazard Mater. 2016, 307, 281–293; https://doi.org/10.1016/j.jhazmat.2015.12.029.Search in Google Scholar

9. Stradling, G. N., Moody, J. C., Gray, S. A., Ellender, M., Hodgson, A. The efficacy of DTPA treatment after deposition of thorium nitrate in the rat lung. Hum. Exp. Toxicol. 1991, 10, 15–20; https://doi.org/10.1177/096032719101000103.Search in Google Scholar

10. Kumar, A., Mishra, P., Ghosh, S., Sharma, P., Ali, M., Pandey, B. N., Mishra, K. P. Thorium-induced oxidative stress mediated toxicity in mice and its abrogation by diethylenetriamine pentaacetate. Int. J. Radiat. Biol 2008, 84, 337–349; https://doi.org/10.1080/09553000801983133.Search in Google Scholar

11. Katsoyiannis, I. A., Zouboulis, A. I. Removal of uranium from contaminated drinking water: a mini review of available treatment methods. Desalination. Water. Treat. 2013, 51, 2915–2925; https://doi.org/10.1080/19443994.2012.748300.Search in Google Scholar

12. Yang, A., Yang, P., Huang, C. P. Preparation of graphene oxide–chitosan composite and adsorption performance for uranium. J. Radioanal. Nucl. Chem. 2017, 313, 371–378; https://doi.org/10.1007/s10967-017-5329-4.Search in Google Scholar

13. Chmielewská, E., Tylus, W. Adsorption of Al (III), Sb (III), chromate and halides onto some natural versus commercial materials. J. Radioanal. Nucl. Chem. 2016, 308, 887–893; https://doi.org/10.1007/s10967-015-4517-3.Search in Google Scholar

14. Petrov, V. G., Perfiliev, Y. D., Dedushenko, S. K., Kuchinskaya, T. S., Kalmykov, S. N. Radionuclide removal from aqueous solutions using potassium ferrate (VI). J. Radioanal. Nucl. Chem. 2016, 310, 347–352; https://doi.org/10.1007/s10967-016-4867-5.Search in Google Scholar

15. Yi, Z. J., Yao, J., Zhu, M. J., Chen, H. L., Wang, F., Yuan, Z. M., Liu, X. Batch study of uranium biosorption by Elodea canadensis biomass. J. Radioanal. Nucl. Chem. 2016, 310, 505–513; https://doi.org/10.1007/s10967-016-4839-9.Search in Google Scholar

16. Ivanov, A. S., Parker, B. F., Zhang, Z., Aguila, B., Sun, Q., Ma, S., Bryantsev, V. S. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nat. Commun. 2019, 10, 1–7; https://doi.org/10.1038/s41467-019-08758-1.Search in Google Scholar

17. El-Magied, A., Abd El-Magied, M. O. Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles. J. Eng. 2016, 2016, https://doi.org/10.1155/2016/7214348.Search in Google Scholar

18. Gao, C., An, Q., Xiao, Z., Zhai, S., Zhai, B., Shi, Z. Alginate and polyethyleneimine dually mediated synthesis of nanosilver-containing composites for efficient p-nitrophenol reduction. Carbohydr. Polym. 2018, 181, 744–751; https://doi.org/10.1016/j.carbpol.2017.11.083.Search in Google Scholar

19. Hassan, M. A., Omer, A. M., Abbas, E., Baset, W. M., Tamer, T. M. Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci. Rep. 2018, 8, 1–14; https://doi.org/10.1038/s41598-018-29650-w.Search in Google Scholar

20. Tamer, T. M., Valachová, K., Hassan, M. A., Omer, A. M., El-Shafeey, M., Eldin, M. S. M., Šoltés, L. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: in vitro and in vivo evaluation studies. Mater. Sci. Eng. C 2018, 90, 227–235; https://doi.org/10.1016/j.msec.2018.04.053.Search in Google Scholar

21. Wang, X. L., Guo, D. M., An, Q. D., Xiao, Z. Y., Zhai, S. R. High-efficacy adsorption of Cr (VI) and anionic dyes onto β-cyclodextrin/chitosan/hexamethylenetetramine aerogel beads with task-specific, integrated components. Int. J. Biol. Macromol. 2019, 128, 268–278; https://doi.org/10.1016/j.ijbiomac.2019.01.139.Search in Google Scholar

22. Xiao, J., Jing, Y., Yao, Y., Wang, X., Jia, Y. Synthesis of amidoxime-decorated 3D cubic mesoporous silica via self-assembly co-condensation as a superior uranium (VI) adsorbent. J. Mol. Liq. 2019, 277, 843–855; https://doi.org/10.1016/j.molliq.2019.01.009.Search in Google Scholar

23. Neusatz Guilhen, S., Rovani, S., Pitol Filho, L., Alves Fungaro, D. Kinetic study of uranium removal from aqueous solutions by macaúba biochar. Chem. Eng. Commun. 2019, 206, 1354–1366; https://doi.org/10.1080/00986445.2018.1533467.Search in Google Scholar

24. Jin, C., Hu, J., Wang, J., Xie, C., Tong, Y., Zhang, L., Wu, G. An amidoximated-UHMEPE fiber for selective and high efficient removal of uranyl and thorium from acid aqueous solution. Adv. Chem. Eng. Sci. 2017, 7, 45; https://doi.org/10.4236/aces.2017.71005.Search in Google Scholar

25. Xiong, J., Hu, S., Liu, Y., Yu, J., Yu, H., Xie, L., Wang, X. Polypropylene modified with amidoxime/carboxyl groups in separating uranium (VI) from thorium (IV) in aqueous solutions. ACS Sustain. Chem. Eng. 2017, 5, 1924–1930; https://doi.org/10.1021/acssuschemeng.6b02663.Search in Google Scholar

26. Zhang, H., Zhang, L., Han, X., Kuang, L., Hua, D. Guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric for potential uranium seawater extraction with antifouling property. Ind. Eng. Chem. Res. 2018, 57, 1662–1670; https://doi.org/10.1021/acs.iecr.7b04687.Search in Google Scholar

27. Li, F., Li, X., Cui, P., Sun, Y. Retraction: plasma-grafted amidoxime/metal–organic framework composites for the selective sequestration of U (VI). Environ. Sci. Nano. 2020, 7, 1615–1615; https://doi.org/10.1039/d0en90017f.Search in Google Scholar

28. Ma, F., Nian, J., Bi, C., Yang, M., Zhang, C., Liu, L., Dong, B. Preparation of carboxylated graphene oxide for enhanced adsorption of U (VI). J. Solid State Chem. 2019, 277, 9–16; https://doi.org/10.1016/j.jssc.2019.05.042.Search in Google Scholar

29. Yang, H., Ding, H., Zhang, X., Luo, X., Zhang, Y. Immobilization of dopamine on Aspergillus Niger microspheres (AM/PDA) and its effect on the U (VI) adsorption capacity in aqueous solutions. Colloid. Surface. Physicochem. Eng. Aspect. 2019, 583, 123914; https://doi.org/10.1016/j.colsurfa.2019.123914.Search in Google Scholar

30. Alqadami, A. A., Naushad, M., Alothman, Z. A., Ghfar, A. A. Novel metal–organic framework (MOF) based composite material for the sequestration of U (VI) and Th (IV) metal ions from aqueous environment. ACS Appl. Mater. Interfaces 2017, 9, 36026–36037; https://doi.org/10.1021/acsami.7b10768.Search in Google Scholar

31. Wu, C., Wang, H., Wei, Z., Li, C., Luo, Z. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: preparation, characterization and their adsorption properties towards heavy metal ions. Appl. Surf. Sci. 2015, 346, 207–215; https://doi.org/10.1016/j.apsusc.2015.04.001.Search in Google Scholar

32. Wu, S., Guo, J., Wang, Y. Bi2O2CO3–Bi2O2 (OH) NO3/g-C3N4 heterojunction as a visible-light-driven photocatalyst with enhanced photogenerated charge separation. J. Alloys Compd. 2020, 818, 152852; https://doi.org/10.1016/j.jallcom.2019.152852.Search in Google Scholar

33. Liu, J., Zhao, C., Wang, J., He, H., Yuan, G., Wang, H., Liu, N. Adsorption of U (VI) from eutrophic aquesous solutions in a U (VI)-P-CO3 system with hydrous titanium dioxide supported by polyacrylonitrile fiber. Hydrometallurgy 2019, 183, 29–37; https://doi.org/10.1016/j.hydromet.2018.11.009.Search in Google Scholar

34. Wang, J., Wang, Y., Zhou, N. The uptake of uranium and europium on the polyacrylamide/titanium dioxide composites. J. Phys. Chem. Solid. 2020, 140, 109387; https://doi.org/10.1016/j.jpcs.2020.109387.Search in Google Scholar

35. Anirudhan, T. S., Rijith, S., Tharun, A. R. Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloid. Surface. Physicochem. Eng. Aspect. 2010, 368, 13–22; https://doi.org/10.1016/j.colsurfa.2010.07.005.Search in Google Scholar

36. Pan, N., Li, L., Ding, J., Li, S., Wang, R., Jin, Y., Xia, C. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th (IV)/U (VI). J. Hazard Mater. 2016, 309, 107–115; https://doi.org/10.1016/j.jhazmat.2016.02.012.Search in Google Scholar

37. Zhang, C., Li, X., Jiang, Z., Zhang, Y., Wen, T., Fang, M., Wang, X. Selective immobilization of highly valent radionuclides by carboxyl functionalized mesoporous silica microspheres: batch, XPS, and EXAFS analyses. ACS Sustain. Chem. Eng. 2018, 6, 15644–15652; https://doi.org/10.1021/acssuschemeng.8b04146.Search in Google Scholar

38. Yu, S., Wang, X., Yao, W., Wang, J., Ji, Y., Ai, Y., Wang, X. Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide. Energy Environ. Sci. 2017, 51, 3278–3286; https://doi.org/10.1021/acs.est.6b06259.Search in Google Scholar

39. Liu, J., Zhao, C., Yuan, G., Dong, Y., Yang, J., Li, F., Liu, N. Adsorption of U (VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U (VI)-CO3 complexes. Hydrometallurgy 2018, 175, 300–311; https://doi.org/10.1016/j.hydromet.2017.12.013.Search in Google Scholar

40. Salameh, S. I., Khalili, F. I., Al-Dujaili, A. H. Removal of U (VI) and Th (IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data. Int. J. Miner. Process. 2017, 168, 9–18; https://doi.org/10.1016/j.minpro.2017.08.007.Search in Google Scholar

41. Li, J., Wang, J., Wang, W., Zhang, X. Symbiotic aerogel fibers made via in-situ gelation of aramid nanofibers with polyamidoxime for uranium extraction. Molecules 2019, 24, 1821; https://doi.org/10.3390/molecules24091821.Search in Google Scholar

42. El-Magied, M. O. A., Mohammaden, T. F., El-Aassy, I. K., Gad, H. M., Hassan, A. M., Mahmoud, M. A. Decontamination of uranium-polluted groundwater by chemically-enhanced, sawdust-activated carbon. Colloid. Interface. 2017, 1, 2; https://doi.org/10.3390/colloids1010002.Search in Google Scholar

43. Sadeek, S. A., Abd El-Magied, M. O., El-Sayed, M. A., Amine, M. M. Selective solid-phase extraction of U (VI) by amine functionalized glycidyl methacrylate. J. Environ. Chem. Eng. 2014, 2, 293–303; https://doi.org/10.1016/j.jece.2013.12.015.Search in Google Scholar

44. Donia, A. M., Atia, A. A., Moussa, E. M., El-Sherif, A. M., Abd El-Magied, M. O. Removal of uranium (VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 2009, 95, 183–189; https://doi.org/10.1016/j.hydromet.2008.05.037.Search in Google Scholar

45. Sadeek, S. A., El-Sayed, M. A., Amine, M. M., Abd El-Magied, M. O. A chelating resin containing trihydroxybenzoic acid as the functional group: synthesis and adsorption behavior for Th (IV) and U (VI) ions. J. Radioanal. Nucl. Chem. 2014, 299, 1299–1306; https://doi.org/10.1007/s10967-013-2847-6.Search in Google Scholar

46. Bi, L., Ma, J., Niu, Z., Duan, G., Lei, Z., Wu, R., Liu, T. Synthesis of β-cyclodextrin derivatives and their selective separation behaviors for U (VI) in solution. J. Radioanal. Nucl. Chem. 2020, 326, 719–736; https://doi.org/10.1007/s10967-020-07343-x.Search in Google Scholar

47. Zeng, H., Wang, L., Zhang, D., Yan, P., Nie, J., Sharma, V. K., Wang, C. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chem. Eng. J. 2019, 358, 253–263; https://doi.org/10.1016/j.cej.2018.10.001.Search in Google Scholar

48. Igberase, E., Osifo, P. O. Application of diethylenetriamine grafted on glyoxal cross-linked chitosan composite for the effective removal of metal ions in batch system. Int. J. Biol. Macromol. 2019, 134, 1145–1155; https://doi.org/10.1016/j.ijbiomac.2019.05.179.Search in Google Scholar

49. Xiong, C., Xiaozheng, L., Caiping, Y. Effect of pH on sorption for RE (III) and sorption behaviors of Sm (III) by D152 resin. J. Rare Earths 2008, 26, 851–856; https://doi.org/10.1016/s1002-0721(09)60020-x.Search in Google Scholar

50. Abd El-Magied, M. O., Elshehy, E. A., Manaa, E. S. A., Tolba, A. A., Atia, A. A. Kinetics and thermodynamics studies on the recovery of thorium ions using amino resins with magnetic properties. Ind. Eng. Chem. Res. 2016, 55, 11338–11345; https://doi.org/10.1021/acs.iecr.6b02977.Search in Google Scholar

51. Tian, G., Geng, J., Jin, Y., Wang, C., Li, S., Chen, Z., Li, S. Sorption of uranium (VI) using oxime-grafted ordered mesoporous carbon CMK-5. J. Hazard Mater. 2011, 190, 442–450; https://doi.org/10.1016/j.jhazmat.2011.03.066.Search in Google Scholar

52. Tag El-Din, A. F., Elshehy, E. A., Abd El-Magied, M. O., Atia, A. A., El-Khouly, M. E. Decontamination of radioactive cesium ions using ordered mesoporous monetite. RSC Adv. 2018, 8, 19041–19050; https://doi.org/10.1039/c8ra02707b.Search in Google Scholar

53. Sun, X., Liu, C., Omer, A. M., Lu, W., Zhang, S., Jiang, X., Ouyang, X. K. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int. J. Biol. Macromol. 2019, 128, 468–479; https://doi.org/10.1016/j.ijbiomac.2019.01.140.Search in Google Scholar

54. Li, F., Yang, Z., Weng, H., Chen, G., Lin, M., Zhao, C. High efficient separation of U (VI) and Th (IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem. Eng. J. 2018, 332, 340–350; https://doi.org/10.1016/j.cej.2017.09.038.Search in Google Scholar

55. Abd El-Magied, M. O., Tolba, A. A., El-Gendy, H. S., Zaki, S. A., Atia, A. A. Studies on the recovery of Th (IV) ions from nitric acid solutions using amino-magnetic glycidyl methacrylate resins and application to granite leach liquors. Hydrometallurgy 2017, 169, 89–98; https://doi.org/10.1016/j.hydromet.2016.12.011.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2020-0122).


Received: 2020-12-10
Accepted: 2021-01-20
Published Online: 2021-02-15
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0122/html
Scroll to top button