Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 17, 2021

Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent

  • Junqiang Yang , Yawen Chen , Juan Tong , Yin Su , Xiaoqing Gao , Jiangang He , Keliang Shi EMAIL logo , Xiaolin Hou and Wangsuo Wu
From the journal Radiochimica Acta

Abstract

Decontamination of the toxic selenium compound, selenite (Se(IV)) and selenate (Se(VI)), from wastewater is imperative for environmental protection. Efficient approaches to remove Se(IV) and Se(VI) are in urgent needs. In this work, an accessible adsorbent Fe–OOH–bent was prepared and applied for the removal of Se(IV) and Se(VI) from wastewater. The batch experimental results demonstrate that Fe–OOH–bent exhibits high adsorption capacities of 5.01 × 10−4 and 2.28 × 10−4 mol/g for Se(IV) and Se(VI) respectively, which are higher than most of the reported bentonite based materials, especially in the case of Se(VI). Moreover, the Fe–OOH–bent displayed superior selectivity towards Se(IV) and Se(VI) even in the presence of excess competitive anions (Cl, HCO3, NO3, SO42− and PO43−) and HA with concentrations of 1000 times higher than Se(IV) and Se(VI). By evaluating the adsorption ratio of Se(IV) and Se(VI), the reusability of Fe–OOH–bent was great through five adsorption-desorption cycles. For practical application, the column experiments were performed with simulated wastewater samples. The breakthrough and eluting curves of Se(IV) and Se(VI) were investigated through the columns packed with Fe–OOH–bent, and the results show that Se(IV) and Se(VI) can be successfully separated and recovered using 0.1 mol/L Na2SO4 (pH = 9.0) and 0.1 mol/L Na3PO4 (pH = 9.0), respectively. Our work provides a new approach for fractional separation as well as the recovery of Se(IV) and Se(VI) from wastewater.


Corresponding author: Keliang Shi, Radiochemistry Lab, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, P. R. China; and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, P. R. China, E-mail:

Award Identifier / Grant number: 21771093

Funding source: Gansu Guiding Program of Science and Technology Innovation

Award Identifier / Grant number: 2018ZX-07

Award Identifier / Grant number: lzujbky-2019-12

Award Identifier / Grant number: lzujbky-2019-kb06

Award Identifier / Grant number: lzujbky-2020-kb11

Funding source: Natural Science Foundation of Gansu Province

Award Identifier / Grant number: No. 18JR3RA022

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial support from National Natural Science Foundation of China (No. 21771093 and No. 22061132004), Gansu Guiding Program of Science and Technology Innovation (No. 2018ZX-07), the Fundamental Research Funds for the Central Universities (No. lzujbky-2020-kb11) and Natural Science Foundation of Gansu Province (No. 18JR3RA022 and No. 20JR10RA610) are gratefully appreciated.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rayman, M. P. The importance of selenium to human health. Lancet 2000, 356, 233. https://doi.org/10.1016/s0140-6736(00)02490-9.Search in Google Scholar

2. Sun, W., Pan, W., Wang, F., Xu, N. Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution. Chem. Eng. J. 2015, 273, 353. https://doi.org/10.1016/j.cej.2015.03.061.Search in Google Scholar

3. Tokunaga, K., Takahashi, Y. Effective removal of selenite and selenate ions from aqueous solution by barite. Environ. Sci. Technol. 2017, 51, 9194. https://doi.org/10.1021/acs.est.7b01219.Search in Google Scholar

4. Bienvenu, P., Cassette, P., Andreoletti, G., Bé, M. M., Comte, J., Lépy, M. C. A new determination of 79Se half-life. Appl. Radiat. Isot. 2007, 65, 355. https://doi.org/10.1016/j.apradiso.2006.09.009.Search in Google Scholar

5. Vinceti, M., Crespi, C. M., Bonvicini, F., Malagoli, C., Ferrante, M., Marmiroli, S., Stranges, S. The need for a reassessment of the safe upper limit of selenium in drinking water. Sci. Total Environ. 2013, 443, 633. https://doi.org/10.1016/j.scitotenv.2012.11.025.Search in Google Scholar

6. Bleiman, N., Mishae, Y. G. Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: batch and columns tests. J. Hazard Mater. 2010, 183, 590. https://doi.org/10.1016/j.jhazmat.2010.07.065.Search in Google Scholar

7. Tan, L. C., Nancharaiah, Y. V., Hullebusch, E. D., Lens, P. N. L. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886. https://doi.org/10.1016/j.biotechadv.2016.05.005.Search in Google Scholar

8. Staicu, L. C., Morin-Crini, N., Crini, G. Desulfurization: critical step towards enhanced selenium removal from industrial effluents. Chemosphere 2017, 172, 111. https://doi.org/10.1016/j.chemosphere.2016.12.132.Search in Google Scholar

9. Shi, K. L., Ye, Y. L., Guo, N., Guo, Z. J., Wu, W. S. Evaluation of Se(IV) removal from aqueous solution by GMZ Na-bentonite: batch experiment and modeling studies. J. Radioanal. Nucl. Chem. 2014, 299, 583. https://doi.org/10.1007/s10967-013-2807-1.Search in Google Scholar

10. Montavon, G., Guo, Z., Lützenkirchen, J., Alhajji, E., Kedziorek, M. A. M., Bourg, A. C. M., Grambow, B. Interaction of selenite with MX-80 bentonite: effect of minor phases, pH, selenite loading, solution composition and compaction. Colloids Surf. A 2009, 332, 71. https://doi.org/10.1016/j.colsurfa.2008.09.014.Search in Google Scholar

11. Idemitsu, K., Kozaki, H., Akiyama, D., Kishimoto, M. Migration behavior of selenium in the presence of iron in bentonite. MRS Proc. 2014, 1665, 157. https://doi.org/10.1557/opl.2014.641.Search in Google Scholar

12. Wang, H., Wu, T., Chen, J., Zhao, Y. L., He, C. H., Li, J. Y. Through-and out-diffusion of Se(IV) and Re(VII) in compacted bentonite. Adv. Mater. Res. 2014, 953–954, 614. https://doi.org/10.4028/www.scientific.net/amr.953-954.614.Search in Google Scholar

13. Missana, T., Alonso, U., Scheinost, A., Granizo, N., García-Gutiérrez, M. Selenite retention by nanocrystalline magnetite: role of adsorption, reduction and dissolution/co-precipitation processes. Geochem. Cosmochim. Acta 2009, 73, 6205. https://doi.org/10.1016/j.gca.2009.07.005.Search in Google Scholar

14. Jordan, N., Ritter, A., Scheinost, A. C., Weiss, S., Schild, D., Hübner, R. Selenium(IV) uptake by maghemite (γ-Fe2O3). Environ. Sci. Technol. 2014, 48, 1665. https://doi.org/10.1021/es4045852.Search in Google Scholar

15. Yamani, J. S., Lounsbury, A. W., Zimmerman, J. B. Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated in chitosan beads. Water Res. 2014, 50, 373. https://doi.org/10.1016/j.watres.2013.10.054.Search in Google Scholar

16. Peak, D. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J. Colloid Interface Sci. 2006, 303, 337. https://doi.org/10.1016/j.jcis.2006.08.014.Search in Google Scholar

17. Szlachta, M., Chubar, N. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water. Chem. Eng. J. 2013, 217, 159. https://doi.org/10.1016/j.cej.2012.11.100.Search in Google Scholar

18. Chubar, N. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg–Al–CO3 layered double hydroxide with very labile interlayer anions. J. Mater. Chem. 2014, 2, 15995. https://doi.org/10.1039/c4ta03463e.Search in Google Scholar

19. Ma, B., Fernandez-Martinez, A., Grangeon, S., Tournassat, C., Findling, N., Carrero, S., Tisserand, D., Bureau, S., Elkaim, E., Marini, C. Selenite uptake by Ca–Al LDH: a description of intercalated anion coordination geometries. Environ. Sci. Technol. 2017, 52, 1624. https://doi.org/10.1021/acs.est.7b04644.Search in Google Scholar

20. Zhu, L., Zhang, L., Li, J., Zhang, D., Chen, L., Sheng, D., Yang, S., Xiao, C., Wang, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S. Selenium sequestration in a cationic layered rare earth hydroxide: a combined batch experiments and EXAFS investigation. Environ. Sci. Technol. 2017, 51, 8606. https://doi.org/10.1021/acs.est.7b02006.Search in Google Scholar

21. Wei, J. M., Zhang, W., Pan, W. Y., Li, C. R. Experimental and theoretical investigations on Se(IV) and Se(VI) adsorption to UiO-66-based metal-organic frameworks. Environ. Sci. Nano 2018, 5, 1441. https://doi.org/10.1039/c8en00180d.Search in Google Scholar

22. Li, J., Liu, Y., Wang, X., Zhao, G., Ai, Y., Han, B., Wen, T., Hayat, T., Alsaedi, A., Wang, X. Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: effect of defects and ligands. Chem. Eng. J. 2017, 330, 1012. https://doi.org/10.1016/j.cej.2017.08.038.Search in Google Scholar

23. Zhao, D., Chen, S., Yang, S., Yang, X., Yang, S. Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem. Eng. J. 2011, 166, 1010. https://doi.org/10.1016/j.cej.2010.11.092.Search in Google Scholar

24. Murali, M. S., Mathur, J. N. Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J. Radioanal. Nucl. Chem. 2002, 254, 129.10.1023/A:1020858001845Search in Google Scholar

25. Zou, C. L., Liang, J. Y., Jiang, W., Guan, Y. Y. Adsorption behavior of magnetic bentonite for removing Hg(II) from aqueous solutions. RSC Adv. 2018, 8, 27587. https://doi.org/10.1039/c8ra05247f.Search in Google Scholar

26. Donat, R., Akdogan, A., Erdem, E., Cetisli, H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J. Colloid Interface Sci. 2005, 286, 43. https://doi.org/10.1016/j.jcis.2005.01.045.Search in Google Scholar

27. Yang, J. Q., Shi, K. L., Sun, X. J., Gao, X. Q., Zhang, P., Niu, Z. W., Wu, W. S. An approach for the efficient immobilization of 79Se using Fe–OOH modified GMZ bentonite. Radiochim. Acta 2020, 108, 113. https://doi.org/10.1515/ract-2019-3151.Search in Google Scholar

28. Li, Y. M., Cheng, W., Sheng, G. D., Li, J. F., Dong, H. P., Chen, Y., Zhu, L. Z. Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron. Appl. Catal., B 2015, 174, 329. https://doi.org/10.1016/j.apcatb.2015.03.025.Search in Google Scholar

29. Orucoglu, E., Haciyakupoglu, S. Bentonite modification with hexadecyl-pyridinium and aluminum polyoxy cations and its effectiveness in Se(IV) removal. J. Ind. Eng. Chem. 2015, 160, 30. https://doi.org/10.1016/j.jenvman.2015.06.005.Search in Google Scholar

30. Wang, H., Wu, T., Chen, J., Zheng, Q., He, C., Zhao, Y. Sorption of Se(IV) on Fe- and Al-modified bentonite. J. Radioanal. Nucl. Chem. 2015, 303, 107. https://doi.org/10.1007/s10967-014-3422-5.Search in Google Scholar

31. Haciyakupoglu, S., Orucoglu, E. 75Se radioisotope adsorption using Turkey’s Reşadiye modified bentonites. Appl. Clay Sci. 2013, 86, 190. https://doi.org/10.1016/j.clay.2013.10.010.Search in Google Scholar

32. Zhai, H., Wang, L. J., Hövelmannn, J., Qin, L. H., Zhang, W. J., Putnis, C. V. Humic acids limit the precipitation of cadmium and arsenate at the Brushite–Fluid interface. Environ. Sci. Technol. 2018, 53, 194. https://doi.org/10.1021/acs.est.8b05584.Search in Google Scholar

33. Alturkmani, A. Industrial wastewater. 2004. http://www.4enveng.com.Search in Google Scholar

34. Gnida, A., Wiszniowski, J., Felis, E., Sikora, J., Surmacz-Gorska, J., Miksch, K. The effect of temperature on the efficiency of industrial wastewater nitrification and its (geno)toxicity. Arch. Environ. Protect. 2016, 42, 27. https://doi.org/10.1515/aep-2016-0003.Search in Google Scholar

35. Xue, G. H., Gao, M. L., Gu, Z., Luo, Z. X., Hu, Z. C. The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites. Chem. Eng. J. 2013, 218, 223. https://doi.org/10.1016/j.cej.2012.12.045.Search in Google Scholar

36. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. Verh. Deut. Physik. Ges. 1918, 16, 1361. https://doi.org/10.1021/ja02242a004.Search in Google Scholar

37. Monte Blanco, S. P. D., Scheufele, F. B., Módenes, A. N., Espinoza-Quiñones, F. R., Marin, P., Kroumov, A. D., Borba, C. E. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chem. Eng. J. 2017, 307, 466. https://doi.org/10.1016/j.cej.2016.08.104.Search in Google Scholar

38. Masoumi, A., Hemmati, K., Ghaemy, M. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water. Chemosphere 2016, 146, 253. https://doi.org/10.1016/j.chemosphere.2015.12.017.Search in Google Scholar

39. Chen, L., Yin, X., Yu, Q., Lu, S., Meng, F., Ning, S., Wang, X., Wei, Y. Rapid and selective capture of perrhenate anion from simulated groundwater by a mesoporous silica-supported anion exchanger. Microporous Mesoporous Mater. 2019, 274, 155. https://doi.org/10.1016/j.micromeso.2018.07.029.Search in Google Scholar

40. Katsoyiannis, I. A., Althoff, H. W., Bartel, H., Jekel, M. The effect of groundwater composition on uranium (VI) sorption onto bacteriogenic iron oxides. Water Res. 2006, 40, 3646. https://doi.org/10.1016/j.watres.2006.06.032.Search in Google Scholar

41. Liang, L., Gu, B., Yin, X. Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep. Technol. 1996, 6, 111. https://doi.org/10.1016/0956-9618(96)00148-8.Search in Google Scholar

42. Singh, N. B., Nagpal, G., Agrawal, S., Rachna, R. Water purification by using adsorbents: a review. Environ. Technol. Innovat. 2018, 11, 187. https://doi.org/10.1016/j.eti.2018.05.006.Search in Google Scholar

43. Niu, Z. L., Ohnuki, T., Simoni, E., Jin, Q., Chen, Z. Y., Wu, W. S., Guo, Z. J. Effects of dissolved and fixed humic acid on Eu(III)/Yb(III) adsorption on aluminum hydroxide: a batch and spectroscopic study. Chem. Eng. J. 2018, 351, 203. https://doi.org/10.1016/j.cej.2018.06.034.Search in Google Scholar

44. Liu, T., Tsang, D. C. W., Lo, I. M. C. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ. Sci. Technol. 2008, 42, 2092. https://doi.org/10.1021/es072059c.Search in Google Scholar

45. Zermane, F., Naceur, M. W., Cheknane, B., Messaoudene, N. A. Adsorption of humic acids by a modified algerian montmorillonite in synthesized seawater. Desalination 2005, 179, 375. https://doi.org/10.1016/j.desal.2004.11.083.Search in Google Scholar

46. Rao, P., Mak, M. S. H., Liu, T., Lai, K. C. K., Lo, I. M. C. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere 2009, 75, 156. https://doi.org/10.1016/j.chemosphere.2008.12.019.Search in Google Scholar

47. Klausen, J., Vikesland, P. J., Kohn, T., Burris, D. R., Ball, W. P., Roberts, A. L. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environ. Sci. Technol. 2003, 37, 1208. https://doi.org/10.1021/es025965s.Search in Google Scholar

48. Devlin, J. F., Allin, K. O. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet bath reactor experiments. Environ. Sci. Technol. 2005, 39, 1868. https://doi.org/10.1021/es040413q.Search in Google Scholar

Received: 2020-08-17
Accepted: 2021-01-30
Published Online: 2021-02-17
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0087/html
Scroll to top button