Skip to main content

Advertisement

Log in

Space-time filter for SSVEP brain-computer interface based on the minimum variance distortionless response

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain-computer interfaces (BCI) based on steady-state visually evoked potentials (SSVEP) have been increasingly used in different applications, ranging from entertainment to rehabilitation. Filtering techniques are crucial to detect the SSVEP response since they can increase the accuracy of the system. Here, we present an analysis of a space-time filter based on the Minimum Variance Distortionless Response (MVDR). We have compared the performance of a BCI-SSVEP using the MVDR filter to other classical approaches: Common Average Reference (CAR) and Canonical Correlation Analysis (CCA). Moreover, we combined the CAR and MVDR techniques, totalling four filtering scenarios. Feature extraction was performed using Welch periodogram, Fast Fourier transform, and CCA (as extractor) with one and two harmonics. Feature selection was performed by forward wrappers, and a linear classifier was employed for discrimination. The main analyses were carried out over a database of ten volunteers, considering two cases: four and six visual stimuli. The results show that the BCI-SSVEP using the MVDR filter achieves the best performance among the analysed scenarios. Interestingly, the system’s accuracy using the MVDR filter is practically constant even when the number of visual stimuli was increased, whereas degradation was observed for the other techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wolpaw JR et al (2002) Brain computer Interfaces for communication and control. Clin Neurophysiol, Elsevier 113(6):767791

    Article  Google Scholar 

  2. Baig MZ, Aslam N, Shum HP (2020) Filtering techniques for channel selection in motor imagery EEG applications: a survey. Artif Intell Rev 53(2):1207–1232

    Article  Google Scholar 

  3. Barbosa AOG, Diaz DRA, Vellasco MMB, Meggiolaro MA, Tanscheit R (2009) Mental tasks classification for a noninvasive bci application. In International Conference on Artificial Neural Networks (pp. 495-504). Springer, Berlin, Heidelberg

  4. Vialatte FB, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90(4):418–438

    Article  Google Scholar 

  5. McFarland DJ, Wolpaw JR (2017) EEG-based brain–computer interfaces. Curr Opin Biomed Eng 4:194–200

    Article  CAS  Google Scholar 

  6. Costa TBS et al (2020) Channel capacity in brain–computer interfaces. J Neural Eng 17(1):016060

    Article  Google Scholar 

  7. Jia C, Gao X, Hong B, Gao S (2010) Frequency and phase mixed coding in SSVEP-based brain--computer interface. IEEE Trans Biomed Eng 58(1):200–206

    PubMed  Google Scholar 

  8. Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137(3-4):346–353

    Article  CAS  Google Scholar 

  9. Erkan E, Akbaba M (2018) A study on performance increasing in SSVEP based BCI application. Eng Sci Technol Int J 21(3):421–427

    Google Scholar 

  10. Graimann B, Allison B, Pfurtscheller G (2009) Brain–computer interfaces: a gentle introduction. In: Brain-Computer Interfaces. Springer, Berlin, pp 1–27

    Google Scholar 

  11. İşcan Z, Nikulin VV (2018) Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. PLoS One 13(1):e0191673

    Article  Google Scholar 

  12. McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394

    Article  CAS  Google Scholar 

  13. Carvalho SN, Costa TB, Uribe LF, Soriano DC, Yared GF, Coradine LC, Attux R (2015) Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 21:34–42

    Article  Google Scholar 

  14. Suarez L, Cardozo E, Attux R, Soriano D (2014) An implementation of SSVEP-BCI system based on a cluster measure for feature selection. In 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC) (pp. 1-6). IEEE

  15. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157–1182

    Google Scholar 

  16. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Prog Biomed 161:1–13

    Article  Google Scholar 

  17. Benesty J, Chen J, Huang Y (2005) A generalized MVDR spectrum. IEEE Signal Process Lett 12(12):827–830

    Article  Google Scholar 

  18. Kiong TS, Salem SB, Paw JKS, Sankar KP, Darzi S (2014) Minimum variance distortionless response beamformer with enhanced nulling level control via dynamic mutated artificial immune system, vol 2014. Sci World J, Hindawi

  19. Wittevrongel B, Van Hulle MM (2016) Frequency-and phase encoded SSVEP using spatiotemporal beamforming. PLoS One 11(8):e0159988

    Article  Google Scholar 

  20. Leite SNDC (2016) Contribuições ao desenvolvimento de interfaces cérebro-computador baseadas em potenciais evocados visualmente em regime estacionário

  21. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) SSVEP recognition using common feature analysis in brain–computer interface. J Neurosci Methods 244:8–15

    Article  Google Scholar 

  22. Garcia-Molina G, Zhu D (2011) Optimal spatial filtering for the steady state visual evoked potential: BCI application. In: IEEE EMBS Conference on Neural Engineering. [S.l.: s.n.]. p. 156–160. ISBN 9781424441419

  23. Theodoridis S, Koutroumbas K (2010) Pattern Recognition. Academic Press, California

    Google Scholar 

  24. Karkon R, Shahshahani SMR, Mahdiani HR (2020) A custom hardware CCA engine for real-time SSVEP-based BCI applications. In 2020 20th International Symposium on Computer Architecture and Digital Systems (CADS) (pp. 1-6). IEEE

  25. Wang Y, Chen X, Gao X, Gao S (2016) A benchmark dataset for SSVEP-based brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng 25(10):1746–1752 Avaliable on: http://bci.med.tsinghua.edu.cn/download.html

    Article  Google Scholar 

  26. Benesty J, Chen J, Huang Y (2006) Estimation of the coherence function with the MVDR approach. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on (Vol. 3, pp. III-III). IEEE

  27. Haykin SS (2008) Adaptive filter theory. Pearson Education

  28. Van Hoey G, Van de Walle R, Vanrumste B, D’Havse M, Lemahieu I, Boon P (1999) Beamforming techniques applied in EEG source analysis. Proc. ProRISC99, 10, 545-549

  29. Bertrand O, Perrin F, Pernier J (1985) A theoretical justification of the average-reference in topographic evoked potential studies. Electroencephalogr Clin Neurophysiol 62:678–695

    Article  Google Scholar 

  30. Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377

    Article  Google Scholar 

  31. De Clercq W, Vergult A, Vanrumste B, Van Paesschen W, Van Huffel S (2006) Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans Biomed Eng 53(12):2583–2587

    Article  Google Scholar 

  32. Correia T, Banga A, Everdell NL, Gibson AP, Hebden JC (2009) A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom. Phys Med Biol 54(20):6277–6286

    Article  Google Scholar 

  33. Lin Z, Zhang C, Wu W, Gao X (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 53(12):2610–2614

    Article  Google Scholar 

  34. Spüler M, Walter A, Rosenstiel W, Bogdan M (2014) Spatial filtering based on canonical correlation analysis for classification of evoked or event-related potentials in EEG data. IEEE Trans Neural Syst Rehabil Eng 22(6):1097–1103

    Article  Google Scholar 

  35. Härdle W, Simar L (2007) Applied multivariate statistical analysis, vol 22007. Springer, Berlin, pp 1051–8215

    Google Scholar 

  36. Oppenheim, A. V.; Schafer, R. W.; Buck, J. R. Discrete-time signal processing. Prentice Hall, 1999.

  37. Welch PD (1967) The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  38. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1-2):273–324

    Article  Google Scholar 

  39. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97(1-2):245–271

    Article  Google Scholar 

  40. Yang C, Zhang H, Zhang S, Han X, Gao S, Gao X (2019) The spatio-temporal equalization for evoked or event-related potential detection in multichannel EEG data. IEEE Trans Biomed Eng 67(8):2397–2414

  41. Oikonomou VP, Nikolopoulos S, Kompatsiaris I (2018) A Bayesian multiple kernel learning algorithm for SSVEP BCI detection. IEEE J Biomed Health Inform 23(5):1990–2001

    Article  Google Scholar 

  42. Li Z, Liu K, Deng X, Wang G (2020) Spatial fusion of maximum signal fraction analysis for frequency recognition in SSVEP-based BCI. Biomed Signal Process Control 61:102042

    Article  Google Scholar 

Download references

Funding

This work is funded by the FINEP (grant n. 01.16.0067.00), FAPESP (grant n. 2013/07559-3, 2019/09512-0), CNPq (grant n. 305616/2016-1, 308811/2019-4), CAPES (Finance Code 001), and UFOP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Negreiros de Carvalho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, S., Vargas, G.V., da Silva Costa, T.B. et al. Space-time filter for SSVEP brain-computer interface based on the minimum variance distortionless response. Med Biol Eng Comput 59, 1133–1150 (2021). https://doi.org/10.1007/s11517-021-02345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02345-7

Keywords

Navigation