Skip to main content
Log in

Numerical simulation of dam break flow impact on vertical cylinder by cumulant lattice Boltzmann method

  • Special Column on the 4th CMHL Symposium 2021 (Guest Editor Decheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The purpose of this study is to apply the cumulant lattice Boltzmann method (LBM) to simulate high Reynolds number free surface flows. The single-phase cumulant LBM is extended to solve the free surface flows by using the phase-field method as the interface capturing scheme. Numerical simulations are performed on an experimental problem of dam break flow impact on a vertical cylinder. Important numerical aspects such as collision model, grid resolution, time step and interface mobility parameter are investigated. It is found that the severe impact pressure oscillation in the simulation by the conventional SRT model, can be significantly suppressed by the cumulant model. Good agreement between the cumulant LBM numerical simulation and the experiment has been obtained on both the free surface profiles and the impact pressures. The numerical results obtained by the present study demonstrate that the cumulant LBM can be a powerful numerical tool for simulations of violent free surface flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolf-Gladrow D. A. Lattice-gas cellular automata and lattice Boltzmann models: an introduction [M]. Berlin, German: Springer, 2004.

    MATH  Google Scholar 

  2. Körner C., Thies M., Hofmann T. et al. Lattice Boltzmann model for free surface flow for modeling foaming [J]. Journal of Statistical Physics, 2005, 121(1–2): 179–196.

    Article  MathSciNet  Google Scholar 

  3. Bogner S., Ammer R., Rüde U. Boundary conditions for free interfaces with the lattice Boltzmann method [J]. Journal of Computational Physics, 2015, 297: 1–12.

    Article  MathSciNet  Google Scholar 

  4. Onodera N., Ohashi K. Large-scale free-surface flow simulation using lattice boltzmann method on multi-GPU clusters [C]. ECCOMAS Congress 2016-Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, Istanbul, Turkey, 2016, 1294–1304.

  5. Janßen C., Krafczyk M. Free surface flow simulations on GPGPUs using the LBM [J]. Computers and Mathematics with Applications, 2011, 61(12): 3549–563.

    Article  MathSciNet  Google Scholar 

  6. Janßen C. F., Grilli S. T., Krafczyk M. On enhanced non-linear free surface flow simulations with a hybrid LBM-VOF model [J]. Computers and Mathematics with Applications, 2013, 65(2): 211–229

    Article  MathSciNet  Google Scholar 

  7. Sato K., Koshimura S. Validation of the MRT- LBM for three-dimensional free-surface flows: An investigation of the weak compressibility in dam-break benchmarks [J]. Coastal Engineering Journal, 2020, 62(1): 53–68.

    Article  Google Scholar 

  8. Li X., Jiang F., Hu C. Analysis of the accuracy and pressure oscillation of the lattice Boltzmann method for fluid-solid interactions [J]. Computers and Fluids, 2016, 129: 33–52.

    Article  MathSciNet  Google Scholar 

  9. Xian W., Takayuki A. Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster [J]. Parallel Computing, 20112, 37(9): 521–535.

    MathSciNet  Google Scholar 

  10. Bailey P., Myre J., Walsh S. D. C. et al. Accelerating lattice boltzmann fluid flow simulations using graphics processors [C]. Proceedings of the International Conference on Parallel Processing, Vienna, Austria, 2009, 550–557.

  11. Bhatnagar P. L., Gross E. P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954, 94(3): 511–525.

    Article  Google Scholar 

  12. d’Humieres D. Multiple-relaxation-time lattice Boltzmann models in three dimensions [J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 360(1792): 437–451.

    Article  MathSciNet  Google Scholar 

  13. Geier M., Schönherr M., Pasquali A. et al. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation [J]. Computers and Mathematics with Applications, 2015, 70(4): 507–547.

    Article  MathSciNet  Google Scholar 

  14. Watanabe S., Aoki T. Large-scale flow simulations using lattice Boltzmann method with AMR following free-surface on multiple GPUs [J]. Computer Physics Communications, 2021, 264: 107871.

    Article  MathSciNet  Google Scholar 

  15. Kamra M. M., Mohd N., Liu C. et al. Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall [J]. Journal of Hydrodynamics, 2018, 30(4): 682–693.

    Article  Google Scholar 

  16. Kamra M. M., Al Salami J., Sueyoshi M. et al. Experimental study of the interaction of dambreak with a vertical cylinder [J]. Journal of Fluids and Structures, 2019, 86: 185–199.

    Article  Google Scholar 

  17. Geier M., Pasquali A., Schönherr M. Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion Part I: Derivation and validation [J]. Journal of Computational Physics, 2017, 348: 862–888.

    Article  MathSciNet  Google Scholar 

  18. Geier M., Pasquali A., Schönherr M. Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion Part II: Application to flow around a sphere at drag crisis [J]. Journal of Computational Physics, 2017, 348: 889–898.

    Article  MathSciNet  Google Scholar 

  19. Bouzidi M., Firdaouss M., Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries [J]. Physics of Fluids, 2001, 13(11): 3452–3459.

    Article  Google Scholar 

  20. Chiu P. H., Lin Y. T. A conservative phase field method for solving incompressible two-phase flows [J]. Journal of Computational Physics, 2011, 230(1): 185–204.

    Article  MathSciNet  Google Scholar 

  21. Peng D., Merriman B., Osher S. et al. A PDE- based fast local level set method [J]. Journal of Computational Physics, 1999, 155(2): 410–438.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The computation was carried out using the computer resource offered under the category of General Projects by Research Institute for Information Technology, Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Hu.

Additional information

Biography: Seiya Watanabe (1991-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Fujisaki, S. & Hu, C. Numerical simulation of dam break flow impact on vertical cylinder by cumulant lattice Boltzmann method. J Hydrodyn 33, 185–194 (2021). https://doi.org/10.1007/s42241-021-0028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0028-6

Key words

Navigation