Skip to main content
Log in

Geochemistry of aerodynamically distorted Australasian microtektites: Implications for ejecta on Mars and Venus

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We report microtektites recovered from a large area of the deep seafloor (Central Indian Ocean) that appear to have undergone aerodynamic distortion during re-entry into the atmosphere. Considering the geographic locations, stratigraphic position and chemical compositions these glassy forms belong to the Australasian tektite strewn field. The microtektites are elongated to lengths of cms, sometimes flattened, bent, folded and fused at both ends suggesting that this side could have been the Earth-facing side during the re-entry. The presence of flow lines and distortional features are indicative of high atmospheric pressures experienced by the microtektites. The location where these microtektites were recovered constitute distal ejecta, and the shape distortion, that occurred during re-entry of the ejecta, seems to have affected only a few amongst the extensive collection of microtektites. Most of the specimens contain lechatelierite inclusions and higher volatile oxides, which are indicative of incomplete homogenization after melting and lower temperatures of formation vis-à-vis other specimens at the same location. The element distribution patterns in aerodynamically distorted microtektites suggest that ablation was similar to normal spherical tektites in which volatile elements are preserved. In contrast, aerodynamically ablated forms of Australasian ejecta show skin melting where thin layers of the anterior portions of samples flow back giving rise to the familiar button shapes. Our observation of delicate, elongated, flattened, and viscously deformed specimens is perhaps the first to imply that at the distal end of ejecta, each spot in the specimens has undergone different levels of trajectories, heating and ablation. These investigations could have implications to understand ejecta emplacement characteristics on planetary surfaces that contain appreciable atmospheres such as Mars and Venus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Baker G 1963 Disc-, Plate-, and bowl-shaped australites; Meteoritics 2 36–49.

    Article  Google Scholar 

  • Barnes V E 1958 Properties of tektites pertinent to their origin; Geochim. Cosmochim. Acta 14 267–278.

    Article  Google Scholar 

  • Barnes V E 1963 Detrital mineral grains in tektites; Science 142 1651–1652.

    Article  Google Scholar 

  • Beran A and Koebrel C 1997 Water in tektites and impact glasses by Fourier transformed infrared spectrometry; Meteorit. Planet. Sci. 32 211–216.

    Article  Google Scholar 

  • Cassidy W A 1964 Experimental testing of hypotheses for the origin of tektites; Geochim. Cosmochim. Acta 28 999–1000.

    Article  Google Scholar 

  • Cassidy W A, Glass B P and Heezen B C 1969 Physical and chemical properties of Australasian microtektites; J. Geophys. Res. 74 1008–1025.

    Article  Google Scholar 

  • Chao E C T 1993 Comparison of the Cretaceous–Tertiary impact events and the 0.77 Ma Australasian tektite event: Relevance to mass extinction; USGS Bull. 2050, U.S. Govt. Printing Office, Denver, Colorado, USA, 22p.

    Google Scholar 

  • Chapman D R 1964 On the unity and origin of the Australasian tektites; Geochim. Cosmochim. Acta 28 841–880.

    Article  Google Scholar 

  • Chapman D R and Larson H K 1963 On the lunar origin of tektites; J. Geophys. Res. 68 4305–4358.

    Article  Google Scholar 

  • Davis A S and Clague D A 2006 Volcaniclastic deposits from the North Arch volcanic field, Hawaii: Explosive fragmentation of alkalic lava at abyssal depths; Bull. Volcanol. 68 294–307.

    Article  Google Scholar 

  • Delano J W 1992 Australite flanges as flight data recorders (abstract); Lunar Planet. Sci. Conf. XXIII., pp. 301–302.

  • Duffield W A, Gibson E K and Heiken G H 1977 Some characteristics of Pele’s hair; J. Res. U.S. Geol. Surv. 5 93–101.

    Google Scholar 

  • Elkins-Tanton L T, Parmentier E M and Hess P C 2003 Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars; Meteorit. Planet. Sci. 38(12) 1753–1771.

    Article  Google Scholar 

  • Folco L, D’Orazio M, Tiepolo M, Tonarini S, Ottolini L, Perchiazzi N, Rochette P and Glass B P 2009 Transantarctic Mountain microtektites: Geochemical affinity with Australasian microtektite; Geochim. Cosmochim. Acta 73 3694–3722.

    Article  Google Scholar 

  • Folco L, Glass B P, D’Orazio M and Rochette P 2010 A common volatilization trend in Transantarctic Mountain and Australasian microtektites: Implications for their formation model and parent crater location; Earth Planet. Sci. Lett. 293(1–2) 135–139.

    Article  Google Scholar 

  • Folco L, d’Orazio M, Gemelli M and Rochette P 2016 Stretching out the Australasian microtektite strewn field in Victoria Land Transantarctic Mountains; Polar Sci. 10(2) 147–159.

    Article  Google Scholar 

  • Ford R J 1988 An empirical model for the Australasian tektite field; Australian J. Earth Sci. 35 483–496.

    Article  Google Scholar 

  • Ghiorso M S and Gualda G A R 2015 An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS; Contrib. Mineral. Petrol. 169 53.

    Article  Google Scholar 

  • Gilchrist J, Thorpe A N and Senftle F E 1969 Infrared analysis of water in tektites and other glasses; J. Geophys. Res. 74 1475–1483.

    Article  Google Scholar 

  • Giordano D, Russell J K and Dingwell D B 2008 Viscosity of magmatic liquids: A model; Earth Planet. Sci. Lett. 271(1–4) 123–134.

    Article  Google Scholar 

  • Glass B P 1972 Bottle-green microtektites; J. Geophys. Res. 77 7057–7064.

    Article  Google Scholar 

  • Glass B P 1974 Microtektite surface sculpturing; Geol. Soc. Am. Bull. 85 1305–1314.

    Article  Google Scholar 

  • Glass B P 1978 Australasian microtektites and the stratigraphic age of australites; Geol. Soc. Am. Bull. 89 1455–1458.

    Article  Google Scholar 

  • Glass B P, Swincki M B and Zwart P A 1979 Australasian, Ivory Coast and North American tektite strewn fields: Size, mass and correlation with geo-magnetic reversals and other Earth events; Proc. Lunar Planet. Sci. Conf. X, pp. 2535–2545.

  • Glass B P 1990 Tektites and microtektites: Key facts and inferences; Tectonophys. 171 393–404.

    Article  Google Scholar 

  • Glass B P and Pizzuto J E 1994 Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater; J. Geophys. Res. 99 19,075–19,081.

    Article  Google Scholar 

  • Glass B P, Chapman D R and Prasad M S 1996 Ablated tektite from the central Indian Ocean; Meteorit. Planet. Sci. 31 365–369.

    Article  Google Scholar 

  • Glass B P, Muenow D W, Bohor B F and Meeker G P 1997 Fragmentation and hydration of tektites and microtektites; Meteorit. Planet. Sci. 32(3) 333–341.

    Article  Google Scholar 

  • Glass B P 2003 Australasian microtektites in the South China Sea: Implications regarding the location and size of the source crater; Proc. Lunar Planet. Sci. XXXI, pp. 1092–1093.

  • Glass B P, Huber H and Koeberl C 2004 Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules; Geochim. Cosmochim. Acta 68 3971–4006.

    Article  Google Scholar 

  • Glass B P and Koeberl C 2006 Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene super eruption of Toba; Meteorit. Planet. Sci. 41 305–326.

    Article  Google Scholar 

  • Gualda G A R, Ghiorso M S, Lemons R V and Carley T L 2012 Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems; J. Petrol. 53 875–890.

    Article  Google Scholar 

  • Heiken G 1972 Morphology and petrography of volcanic ashes; Geol. Soc. Am. Bull. 83 1961–1988.

    Article  Google Scholar 

  • Jarosewich E, Nelen J A and Norberg J A 1980 Reference samples for electron microprobe analysis; Geostandard. Newslett. 4 43–47.

    Article  Google Scholar 

  • Kinnunen K A 1990 Lechatelierite inclusions in indochinites and the origin of tektites; Meteoritics 25 181–184.

    Article  Google Scholar 

  • Lange R L and Carmichael I S E 1990 Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility; Modern Methods of Igneous Petrology, Berlin, pp. 25–64.

  • Lefevre R, Gaudichet A and Billon-Galland M A 1986 Silicate microspherules intercepted in the plume of Etna volcano; Nature 322 817–820.

    Article  Google Scholar 

  • Lorenz R D 2000 Production, Acceleration and distribution of microtektites on Earth, Mars, Venus and Titan; Catastrophic Events Conference, 3021p.

  • Long D A 1977 Raman Spectroscopy; McGraw-Hill, New York, 276p.

    Google Scholar 

  • Ma P, Aggrey K, Tonzola C, Schnabel C, de Nicola P, Herzog G F, Wasson J T, Glass B P, Brown L, Tera F, Middleton R and Klein J 2004 Beryllium-10 in Australasian tektites: Location of the source crater; Geochim. Cosmochim. Acta 68 3883–3896.

    Article  Google Scholar 

  • Mc Call G J H 2001 Tektites in the geological record: Showers of glass from the sky; Geol. Soc, London, 256p.

    Google Scholar 

  • McNamara K and Bevan A 2001 Tektites; Booklet published by Western Australian Museum, Perth 1 38p.

  • Moune S, Faure F, Gauthier P J and Sims K W W 2007 Pele’s hairs and tears: Natural probe of volcanic plume; J. Volcanol. Geotherm. Res. 164 244–253.

    Article  Google Scholar 

  • O’Keefe J A 1976 Tektites and their Origin; Elsevier Publishing Co., Amsterdam, 254p.

    Google Scholar 

  • Prasad M S and Rao P S 1990 Tektites far and wide; Nature 347(6291) 340.

    Article  Google Scholar 

  • Prasad M S and Sudhakar M 1998 Microimpact phenomena on Australasian microtektites: Implications for ejecta plume characteristics and lunar surface processes; Meteorit. Planet. Sci. 33 1271–1279.

    Article  Google Scholar 

  • Prasad M S and Sudhakar M 1999 Australasian minitektites discovered in the Indian Ocean; Meteorit. Planet. Sci. 34 179–184.

    Article  Google Scholar 

  • Prasad M S and Khedekar V D 2003 Impact microcrater morphology on Australasian microtektites; Meteorit. Planet. Sci. 38 1351–1371.

    Article  Google Scholar 

  • Prasad M S, Mahale V P and Kodagali V N 2007 New sites of Australasian microtektites in the Central Indian Ocean: Implications for the location and size of source crater; J. Geophys. Res. 112 E06007.

    Google Scholar 

  • Rietmeijer F J M 1988 Enhanced residence of submicron Si-rich volcanic particles in the lower stratosphere; J. Volcanol. Geotherm. Res. 34 173–184.

    Article  Google Scholar 

  • Schaller C J and Melosh H J 1998 Venusian ejecta parabolas: Comparing theory with observations; Icarus 131 123–137.

    Article  Google Scholar 

  • Simonson B M and Glass B P 2004 Spherule layers – Records of ancient impacts; Ann. Rev. Earth Planet. Sci. 32 329–361.

    Article  Google Scholar 

  • Trnka M and Houzar S 2002 Moldavites: A review; Bull. Czech Geol. Surv. 77 283–302.

    Google Scholar 

  • van Ginneken M, Genge M J and Harvey R P 2018 A new type of highly-vaporized microtektite from the Transantarctic Mountains; Geochim. Cosmochim. Acta 228 81–94.

    Article  Google Scholar 

  • Von Koenigswald G H R 1960 Tektite studies. II. The distribution of the Indo-Australian tektites; Proc. K. Ned. Akad. Wetens, Amsterdam, pp. 142–153.

  • Watt N, Bouchet R A and Lee C-TA 2011 Exploration of tektite formation processes through water and metal content measurements; Meteorit. Planet. Sci. 46 1025–1032.

    Article  Google Scholar 

  • Yamashita S, Kitamura T and Kusakabe M 1997 Infrared spectroscopy of hydrous glasses of arc magma compositions; Geochem. J. 31 169–174.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all the participants of the cruise AAS-62 for their help during sample collection, Vijay Khedekar for help during the SEM observations. This work is sponsored by the Ministry of Earth sciences-PMN and the Indian Space Research Organization PRL-PLANEX project. We acknowledge the reviewers for their comments that helped to improve the presentation of the paper and Dr Chalapathi Rao for encouraging us to carry out the revisions. This is NIO’s contribution 6670.

Author information

Authors and Affiliations

Authors

Contributions

NGR, MSP, SDI, MP, CH and DKP have all supported equally to the main objective behind the manuscript, writing and analysis. MSP and SDI have supported with sample collection and initial observations.

Corresponding author

Correspondence to N G Rudraswami.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudraswami, N.G., Prasad, M.S., Iyer, S.D. et al. Geochemistry of aerodynamically distorted Australasian microtektites: Implications for ejecta on Mars and Venus. J Earth Syst Sci 130, 76 (2021). https://doi.org/10.1007/s12040-021-01589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01589-z

Keywords

Navigation