Skip to main content
Log in

Investigation of the interaction of amphetamine drug with Zn12O12 nanocage: a quantum chemical study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The interaction of amphetamine (AM) drug with a zinc oxide (Zn12O12) nanocage was studied based on the density functional theory (DFT) in a B3LYP/LANL2DZ level of theory. The adsorption energy of the AM drug on the Zn12O12 surface was calculated to be about −14.09 kcal/mol, and this value confirmed the physical adsorption of the drug on the Zn12O12 surface. Also, based on the natural bond orbital (NBO) analysis, charge transfer occurred from the drug to the nanocage, and the value of charge was calculated to be about −0.139 e. In addition, both molecular orbitals show that the LUMO and HOMO are mostly located on the surface of the Zn12O12 nanocage. The mechanism of the sensors depends on the difference between the corresponding levels, which is also correlated with changes in electrical conductivity. The electrical conductivity of Zn12O12 was increased about 31.30% after AM drug adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmadi, A., Beheshtian, J., Hadipour, N.L.: Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct. Chem. 22, 183–188 (2011)

    Google Scholar 

  2. Ahmadi, A., Hadipour, N.L., Kamfiroozi, M., Bagheri, Z.: Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens. Actuators B Chem. 161, 1025–1029 (2012)

    Google Scholar 

  3. Alavi-Tabari, S.A., Khalilzadeh, M.A., Karimi-Maleh, H.: Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 811, 84–88 (2018)

    Google Scholar 

  4. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  5. Beheshtian, J., Bagheri, Z., Kamfiroozi, M., Ahmadi, A.: Toxic CO detection by B12N12 nanocluster. Microelectron. J. 42, 1400–1403 (2011)

    Google Scholar 

  6. Beheshtian, J., Kamfiroozi, M., Bagheri, Z., Ahmadi, A.: Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comput. Mater. Sci. 54, 115–118 (2012)

    Google Scholar 

  7. Berdiyorov, G., Abdullah, H., Al Ezzi, M., Rakhmatullaeva, G., Bahlouli, H., Tit, N.: CO2 adsorption on Fe-doped graphene nanoribbons: first principles electronic transport calculations. Aip Adv. 6, 125102 (2016)

    Google Scholar 

  8. Check, C.E., Faust, T.O., Bailey, J.M., Wright, B.J., Gilbert, T.M., Sunderlin, L.S.: Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements. J. Phys. Chem. A 105, 8111–8116 (2001)

    Google Scholar 

  9. Chen, Y., Bagnall, D., Yao, T.: ZnO as a novel photonic material for the UV region. Mater. Sci. Eng., B 75, 190–198 (2000)

    Google Scholar 

  10. de Oliveira, O.V., Pires, J.M., Neto, A.C., dos Santos, J.D.: Computational studies of the Ca12O12, Ti12O12, Fe12O12 and Zn12O12 nanocage clusters. Chem. Phys. Lett. 634, 25–28 (2015)

    Google Scholar 

  11. Farmanzadeh, D., Keyhanian, M.: Computational assessment on the interaction of amantadine drug with B12N12 and Zn12O12 nanocages and improvement in adsorption behaviors by impurity Al doping. Theor. Chem. Acc. 138, 11 (2019)

    Google Scholar 

  12. Glendening, E.D., Landis, C.R., Weinhold, F.: Natural bond orbital methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 1–42 (2012)

    Google Scholar 

  13. Guo, H., Qian, K., Cai, A., Tang, J., Liu, J.: Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection. Sens. Actuators B Chem. 300, 126846 (2019)

    Google Scholar 

  14. Guo, H., Li, X., Zhu, Q., Zhang, Z., Liu, Y., Li, Z., Wen, H., Li, Y., Tang, J., Liu, J.: Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method. Nanotechnology 31, 455203 (2020)

    Google Scholar 

  15. Haque, F., Daeneke, T., Kalantar-zadeh, K., Ou, J.Z.: Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-micro Lett. 10, 23 (2018)

    Google Scholar 

  16. Hosseini, Z., Mortezaali, A.: Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B Chem. 207, 865–871 (2015)

    Google Scholar 

  17. Hosseini, Z., Mortezaali, A., Fardindoost, S.: Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J. Alloy. Compd. 628, 222–229 (2015)

    Google Scholar 

  18. Hwang, D.-K., Kang, S.-H., Lim, J.-H., Yang, E.-J., Oh, J.-Y., Yang, J.-H., Park, S.-J.: p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett. 86, 222101 (2005)

    Google Scholar 

  19. Ji, X., Jameh-Bozorghi, S.: Metal oxide nanoclusters as drug delivery systems for an anticancer drug: a theoretical study. Mol. Phys. 118, 1–8 (2020)

    Google Scholar 

  20. Jia, L., Liu, B., Zhao, Y., Chen, W., Mou, D., Fu, J., Wang, Y., Xin, W., Zhao, L.: Structure design of MoS 2@ Mo 2 C on nitrogen-doped carbon for enhanced alkaline hydrogen evolution reaction. J. Mater. Sci. 55, 16197–16210 (2020)

    Google Scholar 

  21. Karimi-Maleh, H., Ahanjan, K., Taghavi, M., Ghaemy, M.: A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods 8, 1780–1788 (2016)

    Google Scholar 

  22. Kim, H.-J., Lee, C.-H., Kim, D.-W., Yi, G.-C.: Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors. Nanotechnology 17, S327 (2006)

    Google Scholar 

  23. Ko, S.H., et al.: Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011)

    Google Scholar 

  24. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  25. Li, F., Asadi, H.: DFT study of the effect of platinum on the H2 gas sensing performance of ZnO nanotube: explaining the experimental observations. J. Mol. Liq. 309, 113139 (2020). https://doi.org/10.1016/j.molliq.2020.113139

    Article  Google Scholar 

  26. Li, M., Zhu, H., Wei, G., He, A., Liu, Y.: DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface. RSC Adv. 9, 35862–35871 (2019)

    Google Scholar 

  27. Li, X., Zhang, R., Zhang, X., Zhu, P., Yao, T.: Silver-catalyzed decarboxylative allylation of difluoroarylacetic acids with allyl sulfones in water. Chem. Asian J. 15, 1175–1179 (2020)

    Google Scholar 

  28. Ling, L., Zhao, Z., Wang, B., Fan, M., Zhang, R.: Effects of CO and CO2 on the desulfurization of H2S using a ZnO sorbent: a density functional theory study. Phys. Chem. Chem Phys. 18, 11150–11156 (2016)

    Google Scholar 

  29. Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S., Wang, Y.: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194, 495–503 (2018)

    Google Scholar 

  30. Liu, Y., Zhang, Q., Xu, M., Yuan, H., Chen, Y., Zhang, J., Luo, K., Zhang, J., You, B.: Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl. Surf. Sci. 476, 632–640 (2019)

    Google Scholar 

  31. Liu, C., Huang, X., Wu, Y.-Y., Deng, X., Liu, J., Zheng, Z., Hui, D.: Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 9, 155–169 (2020)

    Google Scholar 

  32. Liu, H., Liu, X., Zhao, F., Liu, Y., Liu, L., Wang, L., Geng, C., Huang, P.: Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. J. Colloid Interface Sci. 562, 182–192 (2020)

    Google Scholar 

  33. Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of Becke and Lee Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Google Scholar 

  34. Miller, D.R., Akbar, S.A., Morris, P.A.: Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B Chem. 204, 250–272 (2014)

    Google Scholar 

  35. Nayebzadeh, M., Peyghan, A.A., Soleymanabadi, H.: Density functional study on the adsorption and dissociation of nitroamine over the nanosized tube of MgO. Phys. E 62, 48–54 (2014)

    Google Scholar 

  36. Ohwaki, T., Otani, M., Ozaki, T.: A method of orbital analysis for large-scale first-principles simulations. J. Chem. Phys. 140, 244105 (2014). https://doi.org/10.1063/1.4884119

    Article  Google Scholar 

  37. Özgür, Ü., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 11 (2005)

    Google Scholar 

  38. Rasmussen, J.W., Martinez, E., Louka, P., Wingett, D.G.: Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7, 1063–1077 (2010)

    Google Scholar 

  39. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Google Scholar 

  40. Ren, J., Kong, W., Ni, J.: The potential application of BAs for a gas sensor for detecting SO 2 gas molecule: a DFT study. Nanoscale Res. Lett. 14, 133 (2019)

    Google Scholar 

  41. Schmidt, M.W., et al.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Google Scholar 

  42. Shankar, P., Rayappan, J.B.B.: Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-a review. Sci. Lett. J. 4, 126 (2015)

    Google Scholar 

  43. Singh, R., Nalwa, H.S.: Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J. Biomed. Nanotechnol. 7, 489–503 (2011)

    Google Scholar 

  44. Su, F., Jia, Q., Li, Z., Wang, M., He, L., Peng, D., Song, Y., Zhang, Z., Fang, S.: Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 275, 152–162 (2019)

    Google Scholar 

  45. Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong, L.-T., Liu, J.-H.: Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012)

    Google Scholar 

  46. Tsukazaki, A., et al.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42–46 (2005)

    Google Scholar 

  47. Wang, C., Chu, X., Wu, M.: Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens. Actuators B Chem. 113, 320–323 (2006)

    Google Scholar 

  48. Wang, J., Sun, X.W., Wei, A., Lei, Y., Cai, X., Li, C.M., Dong, Z.L.: Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006)

    Google Scholar 

  49. Wang, X., et al.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Google Scholar 

  50. Wang, N., et al.: Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. ACS Nano. 9, 3159–3168 (2015)

    Google Scholar 

  51. Wang, M., Yang, L., Hu, B., Liu, J., He, L., Jia, Q., Song, Y., Zhang, Z.: Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens. Bioelectron. 113, 16–24 (2018)

    Google Scholar 

  52. Wang, M., Hu, M., Li, Z., He, L., Song, Y., Jia, Q., Zhang, Z., Du, M.: Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectr. 142, 111536 (2019)

    Google Scholar 

  53. Wang, M., Hu, M., Hu, B., Guo, C., Song, Y., Jia, Q., He, L., Zhang, Z., Fang, S.: Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19–9. Biosens. Bioelectron. 135, 22–29 (2019)

    Google Scholar 

  54. Wang, M., Hu, M., Liu, J., Guo, C., Peng, D., Jia, Q., He, L., Zhang, Z., Du, M.: Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron. 132, 8–16 (2019)

    Google Scholar 

  55. Xu, L., Jiang, S., Zou, Q (2020) An in silico approach to identification, categorization and prediction of nucleic acid binding proteins, bioRxiv

  56. Yan, H., Xue, X., Chen, W., Wu, X., Dong, J., Liu, Y., Wang, Z.: Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2 (PO4) 3 nanocomposite with outstanding electrochemical property. Appl. Surf. Sci. 530, 147295 (2020)

    Google Scholar 

  57. Yu, H., Dai, W., Qian, G., Gong, X., Zhou, D., Li, X., Zhou, X.: The NOx degradation performance of nano-TiO2 coating for asphalt pavement. Nanomaterials 10, 897 (2020)

    Google Scholar 

  58. Yu, H., Zhu, X., Qian, G., Gong, X., Nie, X.: Evaluation of phosphorus slag (PS) content and particle size on the performance modification effect of asphalt. Constr. Build. Mater. 256, 119334 (2020)

    Google Scholar 

  59. Zhang, C., Wang, H.: Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification. Struct. Control. Health Monit. 27, e2543 (2020)

    Google Scholar 

  60. Zhong, P.-F., Lin, H.-M., Wang, L.-W., Mo, Z.-Y., Meng, X.-J., Tang, H.-T., Pan, Y.M.: Electrochemically enabled synthesis of sulfide imidazopyridines via a radical cyclization cascade. Green Chem. 22, 6334–6339 (2020)

    Google Scholar 

  61. Zhu, S., Wang, X., Zheng, Z., Zhao, X.-E., Bai, Y., Liu, H.: Synchronous measuring of triptolide changes in rat brain and blood and its application to a comparative pharmacokinetic study in normal and Alzheimer’s disease rats. J. Pharm. Biomed. Anal. 185, 113263 (2020)

    Google Scholar 

  62. Zuo, C., Sun, J., Li, J., Asundi, A., Chen, Q.: Wide-field high-resolution 3d microscopy with fourier ptychographic diffraction tomography. Opt. Lasers Eng. 128, 106003 (2020)

    Google Scholar 

Download references

Acknowledgements

School level scientific research projects of Xi'an Peihua University in 2019 (Project number:PHKT19006).

Author information

Authors and Affiliations

Authors

Contributions

H. Ma, Y. Hou, H. Fang, and Sarkar contributed equally to the investigation, methodology, validation, and writing—review and editing.

Corresponding author

Correspondence to Huanle Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Hou, Y., Fang, H. et al. Investigation of the interaction of amphetamine drug with Zn12O12 nanocage: a quantum chemical study. J Comput Electron 20, 1065–1071 (2021). https://doi.org/10.1007/s10825-021-01678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01678-8

Keywords

Navigation