Skip to main content
Log in

Analytical model of shear mechanical behaviour of bolted rock joints considering influence of normal stress on bolt guide rail effect

考虑法向应力对锚杆导轨效应影响的锚固节理剪切力学特性分析模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rock bolts have been widely used in slopes as a reinforcement measure. Modelling the shear mechanical behaviours of bolted rock joints is very complicated due to the complex factors that affect the axial force and shear force on the bolts. Rock bolts under shear action exhibit the guide rail effect; that is, the rock mass slides along the rock bolt as if the rock bolt is a rail. The normal stress can inhibit the guide rail effect and reduce the axial force on bolts. However, this factor is not considered by the existing analysis models. Shear tests of bolted joints under different normal stresses were carried out in the laboratory. During the test, the axial force on each point monitored on the bolt was recorded by a strain gauge, and the attenuation trend of the strain was studied. An analytical model that considers the inhibition of the bolt rail effect due to an increase in the normal stress was proposed to predict the shear mechanical behaviour of rock bolted joints. The new model accommodates the bolt shear behaviours in the elastic stage and plastic stage, and the estimated values agree well with the results of the direct shear tests in the laboratory. The validation shows that the proposed model can effectively describe the deformation characteristics of the bolts in the shear tests.

摘要

锚杆被广泛应用与边坡岩体的加固。由于影响锚杆轴力和剪力的因素过于复杂, 因此, 建立锚 固节理剪切力学分析模型十分困难。锚杆在剪切作用下表现出导轨效应, 即岩体会沿着像轨道一样的 锚杆滑动。节理面的法向应力可以抑制导轨效应, 从而降低锚杆中的轴力的发挥, 然而, 现有的分析 模型没有考虑到这一影响因素。为了研究法向应力对锚杆导轨效应影响, 开展不同法向应力下的锚固 节理剪切试验, 采用应变片记录锚杆各监测点的轴向应变, 研究了锚杆轴力随法向应力增大而衰减的 规律。基于轴力的衰减规律, 提出了一种考虑法向应力对锚杆轨道效应抑制作用的锚固节理剪切力学 分析模型, 该模型兼顾了锚杆弹性阶段和塑性阶段的剪切特性, 可以较好地预测锚固节理的剪切力学 行为。模型预测值与室内直剪试验结果吻合较好。验证表明, 该模型能有效地描述锚杆在剪切试验中 的变形特性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHE Na, WANG Hua-ning, JIANG Ming-jing. DEM investigation of rock/bolt mechanical behaviour in pull-out tests [J]. Particuology, 2020, 52: 10–27. DOI: https://doi.org/10.1016/j.partic.2019.12.006.

    Article  Google Scholar 

  2. ZOU Jin-feng, ZHANG Peng-hao. Analytical model of fully grouted bolts in pull-out tests and in situ rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 278–294. DOI: https://doi.org/10.1016/j.ijrmms.2018.11.015.

    Article  Google Scholar 

  3. ITO F, NAKAHARA F, KAWANO R, KANG S S, OBARA Y. Visualization of failure in a pull-out test of cable bolts using X-ray CT [J]. Construction and Building Materials, 2001, 15(5, 6): 263–270. DOI: https://doi.org/10.1016/S0950-0618(00)00075-1.

    Article  Google Scholar 

  4. MENG Xiang-rui, ZHANG Ruo-fei, LI Ying-ming, JIANG Wei, YUAN Ying-hong, JI Guo-qing. Stress distribution law and influence factors of full-length anchorage FRP bolts [J]. Journal of Mining and Safety Engineering, 2019, 36(4): 678–684. http://www.cnki.com.cn/Article/CJFDTotal-KSYL201904005.htm. (in Chinese)

    Google Scholar 

  5. XIAO Tong-qiang, LI Hua-min, LI Hai-yang, WANG Meng. Pull-out properties of bolt with different anchorage length [J]. Journal of Mining and Safety Engineering, 2017, 34(6): 1075–1080. http://www.cnki.com.cn/Article/CJFDTotal-KSYL201706006.htm. (in Chinese)

    Google Scholar 

  6. ZHANG Wei, LIU Quan-sheng. Synthetical deformation analysis of anchor bolt in jointed rock mass [J]. Rock and Soil Mechanics, 2012, 33(4): 1067–1074. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201204017.htm. (in Chinese)

    Google Scholar 

  7. GE Xiu-run, LIU Jian-wu. Study on shear resistance behavior of bolted rock joints [J]. Chinese Journal of Geotechnical Engineering, 1988, 10(1): 8–19. http://www.cnki.com.cn/Article/CJFDTotal-YTGC198801001.htm. (in Chinese)

    Google Scholar 

  8. SRIVASTAVA L P, SING M. Effect of fully grouted passive bolts on joint shearstrength parameters in a blocky mass [J]. Rock Mech Rock Eng, 2015, 48: 1–10. DOI: https://doi.org/10.1007/s00603-014-0615-8.

    Article  Google Scholar 

  9. CHEN Yu, LI C C. Performance of fully encapsulated rebar bolts and D-bolts under combined pull-and-shear loading [J]. Tunnelling Underground Space Technol, 2015, 45: 99–106. DOI: https://doi.org/10.1016/j.tust.2014.09.008.

    Article  Google Scholar 

  10. LI Xu-wei, AZIZ N, MIRZAGHORBANALI A, NEMCIK J. Behavior of fiber glass bolts, rock bolts and cable bolts in shear [J]. Rock Mech Rock Eng, 2016, 49: 2723–2735. DOI: https://doi.org/10.1007/s00603-015-0907-7.

    Article  Google Scholar 

  11. RASEKH H, AZIZ N, MIRZA A, NEMCIK J, LI Xu-wei, YANG Guan-yu, KHALEGHPARAST S. Double shear testing of cable bolts with no concrete face contacts [J]. Procedia Engineering, 2017, 191, 2017: 1169–1177. DOI: https://doi.org/10.1016/j.proeng.2017.05.292.

    Article  Google Scholar 

  12. GRASSELLI G. 3D Behaviour of bolted rock joints: Experimental and numerical study [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 13–24. DOI: https://doi.org/10.1016/j.ijrmms.2004.06.003.

    Article  Google Scholar 

  13. WU Qiong, JIANG Yao-fei, TANG Hui-ming, LUO Hong-ming, WANG Xiao-han, KANG Jin-tao, ZHANG Shu, YI Xin, FAN Liang-liang. Experimental and numerical studies on the evolution of shear behaviour and damage of natural discontinuities at the interface between different rock types [J]. Rock Mechanics and Rock Engineering, 2020, 53: 3721–3744. DOI: https://doi.org/10.1007/s00603-020-02129-9.

    Article  Google Scholar 

  14. LIU Cai-hua, LI Yu-zong. Predicting the shear resistance contribution of passive fully grouted bolts to jointed rock [J]. International Journal of Geomechanics, 2020, 20(2): 04019174. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001581.

    Article  Google Scholar 

  15. LIN Hang, SUN Peng-hui, CHEN Yi-fan, ZHU You-yan, FAN Xiang, ZHAO Yan-lin. Analytical and experimental analysis of the shear strength of bolted saw-tooth joints [J]. European Journal of Environmental and Civil Engineering, 2020, 1: 1–15. DOI: https://doi.org/10.1080/19648189.2020.1726822.

    Article  Google Scholar 

  16. CHEN Na, ZHANG Xiao-bo, JIANG Qing-hui, FENG Xi-xia, WEI Wei, YI Bing. Shear behaviour of rough rock joints reinforced by bolts [J]. International Journal of Geomechanics, 2018, 18(1): 04017130. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001048.

    Article  Google Scholar 

  17. WU Xue-zhen, JIANG Yu-jing, GONG Bin, GUAN Zhen-chang, DENG Tao. Shear performance of rock joint reinforced by fully encapsulated rock bolt under cyclic loading condition [J]. Rock Mechanics & Rock Engineering, 2019, 52: 2681–2690. DOI: https://doi.org/10.1007/s00603-018-1698-4.

    Article  Google Scholar 

  18. LI L, HAGAN P C, SAYDAM S, HEBBLEWHITE B, LI Y. Parametric study of rockbolt shear behaviour by double shear test [J]. Rock Mech Rock Eng, 2016, 49(12): 4787–4797. DOI: https://doi.org/10.1007/s00603-016-1063-4.

    Article  Google Scholar 

  19. LIU Quan-sheng, LEI Guang-feng, PENG Xing-xin, WEI Lai, LIU Jian-ping, PAN Yu-cong. Experimental study and mechanism analysis of influence of bolt anchoring on shear properties of jointed rock mass [J]. Rock and Soil Mechanics, 2017, 38(S1): 27–35. DOI: https://doi.org/10.16285/j.rsm.2017.S1.003. (in Chinese)

    Google Scholar 

  20. SPANG K, EGGER P. Action of fully-grouted bolts in jointed rock and factors of influence [J]. Rock Mechanics and Rock Engineering, 1990, 23: 201–229. DOI: https://doi.org/10.1007/BF01022954.

    Article  Google Scholar 

  21. LUDVID B. Shear tests on rock bolts [C]// Proceedings of International Symposium on Rock Bolting. Balkema: Abisko, 1983: 113–123. https://www.researchgate.net/publication/284616968_Shear_tests_on_rock_bolts.

    Google Scholar 

  22. CUI Guo-jian, ZHANG Chuan-qing, Chen Jian-lin, YANG Fan-jie, ZHOU Hui, LU Jing-jing. Effect of bolt inclination angle on shear behavior of bolted joints under CNL and CNS conditions [J]. Journal of Central South University, 2020, 27: 937–950. DOI: https://doi.org/10.1007/s11771-020-4342-x.

    Article  Google Scholar 

  23. WU Xue-zhen, JIANG Yu-jing, GONG Bin, GUAN Zhen-chang, DENG Tao. Shear performance of rock joint reinforced by fully encapsulated rock bolt under cyclic loading condition [J]. Rock Mechanics & Rock Engineering, 2019, 52: 2681–2690. DOI: https://doi.org/10.1007/s00603-018-1698-4.

    Article  Google Scholar 

  24. YOSHINAKA R, SAKGUCHI S, SHIMIZU T, ARAI H, KATO E. Experimental study on the rock bolt reinforcement in discontinuous rocks [J]. Electronics & Communications in Japan, 1987, 133(113): 117–127. DOI: https://doi.org/10.1002/ecj.11645.

    Google Scholar 

  25. HASS C J. Analysis of rock bolting to prevent shear movement in fractured ground [J]. Journal of Mining Engineering, 1981, 33(6): 698–704. https://www.sci-hub.ren/10.1016/0148-9062(81)90710-5.

    Google Scholar 

  26. SONG Hong-wei, DUAN Yan-yan, YANG Jing. Numerical simulationon bolted rock joint shearing performance [J]. International Joural of Mining Science and Technology, 2011, 20(3): 460–465. DOI: https://doi.org/10.1016/S1674-5264(09)60226-X.

    Google Scholar 

  27. SONG Hong-wei. New study on transverse effect of rock bolts in discontinuous rock mass [J]. Journal of China University of Mining & Technology, 2003, 32(2): 161–164. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200302016.htm. (in Chinese)

    Google Scholar 

  28. JIA Ying-xuan, SONG Hong-wei, DUAN Yan-yan. Physical simulation study on rail way Effect of bolt in discontinuous rock mass [J]. Journal of China University of Mining & Technology, 2007, 36(4): 614–617. DOI: https://doi.org/10.1016/S1872-2032(07)60057-2. (in Chinese)

    Google Scholar 

  29. KAWAKATA H, CHO A, KIYAMA T, YANAGIDANI T, KUSUNOSE K, SHIMADA M. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan [J]. Tectonophysics, 1999, 313: 293–305. DOI: https://doi.org/10.1016/S0040-1951(99)00205-X.

    Article  Google Scholar 

  30. FERRERO A M. The shear strength of reinforced rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(6): 595–605. DOI: https://doi.org/10.1016/0148-9062(95)00002-X.

    Article  Google Scholar 

  31. LI Yu-zong, LIU Cai-hua. Experimental study on the shear behavior of fully grouted bolts [J]. Construction and Building Materials, 2019, 223: 1123–1134. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.207.

    Article  Google Scholar 

  32. PELLET F, EGGER P. Analytical model for the mechanical behaviour of bolted rock joints subjected to shearing [J]. Rock Mech Rock Eng, 1996, 29(2): 73–97. DOI: https://doi.org/10.1007/BF01079755.

    Article  Google Scholar 

  33. ZHAO Zeng-hui, GAO Xiao-jie, TAN Yun-liang, MA Qing. Theoretical and numerical study on reinforcing effect of rock-bolt through composite soft rock-mass [J]. Journal of Central South University, 2018, 25: 2512–2522. DOI: https://doi.org/10.1007/s11771-018-3932-3.

    Article  Google Scholar 

  34. MA Shu-qi, ZHAO Zhi-ye, SHANG Jun-long. An analytical model for shear behaviour of bolted rock joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 121: 104019. DOI: https://doi.org/10.1016/j.ijrmms.2019.04.005.

    Article  Google Scholar 

  35. CHEN Yu, WEN Guan-ping, HU Jian-hua. Analysis of deformation characteristics of fully grouted rock bolts under pull-and-shear loading [J]. Rock Mechanics and Rock Engineering, 2020, 53: 2981–2993. DOI: https://doi.org/10.1007/s00603-020-02108-0.

    Article  Google Scholar 

  36. MURALHA J, GRASSELLI G, TATONE B, BLÜMEL M, CHRYSSANTHAKIS P, JIANG Yu-jing. ISRM suggested method for laboratory determination of the shear strength of rock joints: Revised version [J]. Rock Mech Rock Eng, 2014, 47: 291–302. DOI: https://doi.org/10.1007/978-3-319-07713-0_10.

    Article  Google Scholar 

  37. MA Shu-qi, NEMCIK J, AZIZ N. An analytical model or fully grouted rock bolts subjected to tensile load [J]. Construction and Building Materials, 2013, 49: 519–526. DOI: https://doi.org/10.1016/j.conbuildmat.2013.08.084.

    Article  Google Scholar 

  38. MORADI A R, SOLTANI M, TASNIMI A A. A simplified constitutive model for dowel action across RC cracks [J]. J Adv Concr Technol, 2012, 10(8): 264–277. DOI: https://doi.org/10.3151/jact.10.264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-qing Wang  (王亮清).

Additional information

Foundation item

Projects(41931295, 41877258) supported by the National Natural Science Foundation of China; Project(2017YFC1501305) supported by the National Key Research and Development Program of China

Contributors

ZHENG Luo-bin provided the concept and edited the draft of manuscript. WANG Liang-qing reviewed and edited draft of the manuscript and provided financial support. ZHU Lin-feng edited the draft of manuscript.

Conflict of interest

ZHENG Luo-bin, WANG Liang-qing, and ZHU Lin-feng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Lb., Wang, Lq. & Zhu, Lf. Analytical model of shear mechanical behaviour of bolted rock joints considering influence of normal stress on bolt guide rail effect. J. Cent. South Univ. 28, 1505–1518 (2021). https://doi.org/10.1007/s11771-021-4700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4700-3

Key words

关键词

Navigation