Skip to main content
Log in

Snell’s Law Applied to Tsunamis: Simulations and Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

At the edge of a continental shelf, where the depth of the ocean column can vary rapidly by a factor of \(\sim \) 20, tsunamis are expected to be severely refracted in application of Snell’s Law. We use beaming techniques applied to numerical simulations under the shallow-water approximation, in the geometry of two real-life provinces of the Pacific Basin featuring sharp bathymetric discontinuities and extended shelves (Southeastern Alaska and Nicaragua). We conclude that tsunamis do indeed undergo refraction under Snell’s Law with equivalent refraction indices as high as 5. We apply the same technique to actual records of the 2011 Tohoku tsunami by an array of seafloor pressure sensors off the coast of Southern California, and similarly observe Snell refraction despite a smaller velocity contrast and the presence of a shelf with extremely irregular bathymetry. Finally, we show numerically that for a source and a linear array of receivers both deployed on a well developed continental shelf bordering a deep basin, the tsunami will develop a head wave in all ways similar to the familiar case of refraction seismology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Snell’s Law takes its name from the Dutch mathematician Snellius (1621), but is known in French-speaking countries as Loi de Descartes, since it was stated in an appendix to the French philosopher’s Discours de la Méthode in 1637. A longstanding controversy regarding the knowledge of Snell’s work by R. Descartes, who was living in the Netherlands at the time, was never fully resolved (Kwan et al., 2002). At any rate, the geometry of refraction was already described in 984 A.D., i.e., 650 years earlier, by A. Ibn Sahl, a Persian scholar living in Baghdad, who was probably himself inspired by early but fragmentary work by Ptolemy, dating back to the second century A.D. (Rashed, 1990). In this paper, we will stick with the traditional name of “Snell’s Law”.

References

  • Ben-Menahem, A., & Rosenman, M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research, 77, 3097–3128.

    Article  Google Scholar 

  • Cagniard, L. (1939). Réflexion et réfraction des ondes séismiques progressives (260 p.). Gauthier-Villars.

    Google Scholar 

  • de Hoop, A. T. (1960). A modification of Cagniard’s method for solving seismic pulse problems. Applied Science Research, B8, 349–356.

    Article  Google Scholar 

  • Derakhti, M., Dalrymple, R. A., Okal, E. A., & Synolakis, C. E. (2019). Temporal and topographic source effects in tsunami generation. Journal of Geophysical Research Oceans, 124, 5270–5288.

    Article  Google Scholar 

  • Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The GlobalCMT project, 2004–2010: Centroid-moment-tensors for 13017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.

    Article  Google Scholar 

  • Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66, 1501–1523.

    Article  Google Scholar 

  • Godunov, S. K. (1959). Finite difference methods for numerical computations of discontinuous solutions of the equations of fluid dynamics. Matematicheskiĭ Sbornik, 47, 271–295.

    Google Scholar 

  • Helmberger, D. V. (1968). The crust-mantle transition in the Bering Sea. Bulletin of the Seismological Society of America, 58, 179–214.

    Google Scholar 

  • Jobert, N., & Jobert, G. (1983). An application of ray theory to the propagation of waves along a laterally heterogeneous spherical surface. Geophysical Research Letters, 10, 1148–1151.

    Article  Google Scholar 

  • Kohler, M., Weeraratne, D.S., Booth, K., Celnick, M., Cleary, E., Clements, B., Huang, L., Shintaku, N., Sun, C., Tsang, S., Zhu, J., Aaron, E., Thai, P., Gibaud, M., Kao, R., Flores, D., Anderson, D., Meyer, J. & Rowe, B. (2010). ALBACORE OBS deployment cruise report (27 p.). California Institute of Technology. https://resolver.caltech.edu/CaltechAUTHORS:20160211-163227527.

  • Kohler, M., Weeraratne, D.S., Ahn, C., Brunner, K., Clements, B., Escobar, L., Logan, P., Sotirov, T., Zhu, J., Lambert, R., Mogk, S., Aaron, E., Gibaud, M., Thai, P., Anderson, D., & Donohue, M. (2011). ALBACORE OBS recovery cruise report (35 p.). California Institute of Technology. https://resolver.caltech.edu/CaltechAUTHORS:20160211-162914168.

  • Kwan, A., Dudley, J., & Lantz, E. (2002). Who really discovered Snell’s Law? Physics World, 15, 64.

    Article  Google Scholar 

  • Lin, F.-C., Ritzwoller, M. H., & Snieder, R. (2009). Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177, 1091–1110.

    Article  Google Scholar 

  • Lin, F.-C., Kohler, M. D., Lynett, P., Ayca, A., & Weeraratne, D. S. (2015). The 11 March 2011 Tohoku tsunami wavefront mapping across offshore Southern California. Journal of Geophysical Research Solid Earth, 120, 3350–3362.

    Article  Google Scholar 

  • Mansinha, L., & Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61, 1433–1440.

    Article  Google Scholar 

  • Miyoshi, H. (1955). Directivity of the recent tsunamis. Journal of the Oceanographic Society of Japan, 11, 151–155.

    Article  Google Scholar 

  • Mochizuki, M., Kanazawa, T., Uehira, K., Shimbo, T., Shiomi, K., Kunugi, T., et al. (2016). S−NET project: Construction of large scale seafloor observatory network for tsunamis and earthquakes in Japan. EOS, Transactions of the American Geophysical Union, 97(53), NH43B-1840 (abstract).

    Google Scholar 

  • Okal, E. A. (2007). Seismic records of the 2004 Sumatra and other tsunamis: A quantitative study. Pure and Applied Geophysics, 164, 325–353.

    Article  Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2016). Sequencing of tsunami waves: Why the first wave is not always the largest. Geophysical Journal International, 204, 719–735.

    Article  Google Scholar 

  • Okal, E. A., Talandier, J., & Reymond, D. (2007). Quantification of hydrophone records of the 2004 Sumatra tsunami. Pure and Applied Geophysics, 164, 309–323.

    Article  Google Scholar 

  • Rabinovich, A. B. (1993). Long ocean gravity waves: Trapping, resonance, leaking (325 p.). Gidrometeoizdat (in Russian).

    Google Scholar 

  • Rashed, R. (1990). A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses. Isis, 81, 464–491.

    Article  Google Scholar 

  • Satake, K. (1988). Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis. Pure and Applied Geophysics, 126, 27–36.

    Article  Google Scholar 

  • Synolakis, C. E. (2003). Tsunami and seiche. In W.-F. Chen & C. Scawthron (Eds.), Earthquake engineering handbook (pp. 9_1–9_90). CRC Press.

    Google Scholar 

  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., & González, F. I. (2008). Validation and verification of tsunami simulation models. Pure and Applied Geophysics, 165, 2197–2228.

    Article  Google Scholar 

  • Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave run-up. Journal of Waterway, Port and Coastal Ocean Engineering, 124, 157–171.

    Article  Google Scholar 

  • Titov, V. V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & González, F. I. (2005). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048.

    Article  Google Scholar 

  • Titov, V. V., Kânoğlu, U., & Synolakis, C. E. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port and Coastal Ocean Engineering, 142(6), 03116004.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. EOS, Transactions of the American Geophysical Union, 72, 441 and 445–446.

    Article  Google Scholar 

  • Woods, M. T., & Okal, E. A. (1987). Effect of variable bathymetry on the amplitude of teleseismic tsunamis: A ray-tracing experiment. Geophysical Research Letters, 14, 765–768.

    Article  Google Scholar 

  • Yomogida, K., & Aki, K. (1985). Waveform synthesis of surface waves in a laterally heterogeneous Earth by the Gaussian beam method. Journal of Geophysical Research, 90, 7665–7688.

    Article  Google Scholar 

Download references

Acknowledgements

I thank A. B. Rabinovich for pointing out his 1993 monograph. The data used in Sect. 3 were obtained from the IRIS Data Center. Maps were drawn using the GMT software (Wessel & Smith, 1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile A. Okal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okal, E.A. Snell’s Law Applied to Tsunamis: Simulations and Observations. Pure Appl. Geophys. 178, 4969–4983 (2021). https://doi.org/10.1007/s00024-021-02703-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02703-4

Keywords

Navigation