Skip to main content

Advertisement

Log in

The Effects of Graphite Particles on arc Plasma Characteristics

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The interaction between graphite particles and argon plasma in the arc torch is investigated by numerical simulations. The addition of carbon vapor improves the specific heat capacity, electrical conductivity and thermal conductivity of plasma, and decreases its viscosity. It is important to note that the changes in the thermodynamic and transport properties of the plasma substantially affect the arc plasma temperature and the spatial distribution of the carbon vapor concentration. As the graphite particle feed rate increases, the arc will be continuously contracted and the arc electric current density will be increased. The carbon vapor enhances the plasma electrical conductivity, but the heat absorption by the particles reduces the temperature of the plasma, eventually leading to decreased the electrical conductivity. Both result in ascent of the electric field of the arc, so that increase the arc voltage. In addition, the heat flux radial distribution of radiation-absorption of the particles is much less than the thermal conduction, but the particles near the wall absorb radiation from arc region, so that reduce energy loss of the radiation of the arc column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

All data and materials as well as software application support their published claims and comply with field standards.

Code Availability

Custom code support their published claims and comply with field standards.

References

  1. Liu SH, Trelles JP, Murphy AB, Li L, Zhang SL, Yang GJ, Li CX, Li CJ (2019) J Phys D Appl Phys 52:335203

    Article  CAS  Google Scholar 

  2. Chen J, Cheng Y (2009) J Chem Eng Jpn 42:s103–s110

    Article  Google Scholar 

  3. Yugeswaran S, Selvarajan V, Seo D, Ogawa K (2008) Surf Coat Technol 203:129–136

    Article  CAS  Google Scholar 

  4. Wan YP, Fincke JR, Sampath S, Prasad V, Herman H (2002) Int J Heat Mass Transf 45:1007–1015

    Article  CAS  Google Scholar 

  5. Yang K, Rong J, Feng JW, Zhuang Y, Zhao HY, Wang L, Ni JX, Tao SY, Shao F, Ding CX (2017) Surf Coat Technol 326:96–102

    Article  CAS  Google Scholar 

  6. Gulyaev I (2015) Ceram Int 41:101–107

    Article  CAS  Google Scholar 

  7. Ye R, Proulx P, Boulos MI (2000) J Phys D Appl Phys 33:2154

    Article  CAS  Google Scholar 

  8. Ye R, Ishigaki T, Jurewicz J, Proulx P, Boulos M (2004) Plasma Chem Plasma Process 24:555–571

    Article  CAS  Google Scholar 

  9. Shigeta M, Watanabe T, Nishiyama H (2004) Thin Solid Films 457:192–200

    Article  CAS  Google Scholar 

  10. http://www.mettech.com/coating-equipment/axial-III-plasma-spray-system.php

  11. Ma J, Su BG, Wen GD, Yang QW, Ren QL, Yang YW, Xing HB (2017) Fuel Process Technol 167:721–729

    Article  CAS  Google Scholar 

  12. Wang C, Cui HC, Li WW, Liao MR, Xia WL, Xia WD (2017) Chin Phys B 26:025202

    Article  Google Scholar 

  13. Todorović-Marković B, Marković Z, Mohai I, Nikolić Z, Farkas Z, Szépvölgyi J, Kováts É, Scheier P, Feil S (2006) J Phys D Appl Phys 39:320

    Article  Google Scholar 

  14. Wang C, Imahori T, Tanaka Y, Sakuta T, Takikawa H, Matsuo H (2001) Thin Solid Films 390:31–36

    Article  CAS  Google Scholar 

  15. Szépvölgyi J, Marković Z, Todorović-Marković B, Nikolić Z, Mohai I, Farkas Z, Tóth M, Kováts É, Scheier P, Feil S (2006) Plasma Chem Plasma Process 26:597–608

    Article  Google Scholar 

  16. Delbos C, Fazilleau J, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Plasma Chem Plasma Process 26:393–414

    Article  CAS  Google Scholar 

  17. Saito H, Suzuki T, Fujino T, Suzuki M (2018) Mater Trans 59:1791–1797

    Article  CAS  Google Scholar 

  18. Gawne D, Liu B, Bao Y, Zhang T (2005) Surf Coat Technol 191:242–254

    Article  CAS  Google Scholar 

  19. Lee Y, Pfender E (1987) Plasma Chem Plasma Process 7:1–27

    Article  Google Scholar 

  20. Mostaghimi-Tehrani J, Pfender E (1984) Plasma Chem Plasma Process 4:129–139

    Article  CAS  Google Scholar 

  21. Chen X, Chyou Y, Lee YC, Pfender E (1985) Plasma Chem Plasma Process 5:119–141

    Article  CAS  Google Scholar 

  22. Proulx P, Mostaghimi J, Boulos MI (1985) Int J Heat Mass Transfer 28:1327–1336

    Article  CAS  Google Scholar 

  23. Suzuki T, Saito H, Fujino T (2018) IEEE T Plasma Sci 47:688–700

    Article  Google Scholar 

  24. Bauchire J, Gonzalez J, Proulx P (1999) J Phys D Appl Phys 32:675

    Article  CAS  Google Scholar 

  25. Proulx P, Mostaghimi J, Boulos MI (1987) Plasma Chem Plasma Process 7:29–52

    Article  CAS  Google Scholar 

  26. Li HP, Chen X (2002) Plasma Chem Plasma Process 22:27–58

    Article  Google Scholar 

  27. Xu DY, Wu XC, Chen X (2003) Surf Coat Technol 171:149–156

    Article  CAS  Google Scholar 

  28. Pan ZH, Ye L, Qian SL, Sun Q, Wang C, Ye TH, Xia WD (2019) Plasma Sci Technol 22:025401

    Article  Google Scholar 

  29. Wilke C (1950) J Chem Phys 18:517–519

    Article  CAS  Google Scholar 

  30. ANSYS 2009 ANSYS FLUENT 12.0 Theory Guide (Canonsburg, PA)

  31. Huang R, Fukanuma H, Uesugi Y, Tanaka Y (2012) J Therm Spray Technol 21:636–643

    Article  Google Scholar 

  32. Han P, Chen X (2001) Plasma Chem Plasma Process 21:249–264

    Article  CAS  Google Scholar 

  33. Bauchire J, Gonzalez J, Gleizes A (1997) Plasma Chem Plasma Process 17:409–432

    Article  CAS  Google Scholar 

  34. Godin D, Trépanier J (2004) Plasma Chem Plasma Process 24:447–473

    Article  CAS  Google Scholar 

  35. Wang WZ, Rong MZ, Murphy AB, Wu Y, Spencer JW, Yan JD, Fang MT (2011) J Phys D Appl Phys 44:355207

    Article  Google Scholar 

  36. Pan WX, Meng X, Wu CK (2006) Plasma Sci Technol 8:416

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11675177 and 11875256).

Funding

This work was supported by the National Natural Science Foundation of China (No. 11675177 and No. 11875256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhui Chen or Weidong Xia.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Chen, X., Yuan, X. et al. The Effects of Graphite Particles on arc Plasma Characteristics. Plasma Chem Plasma Process 41, 1183–1203 (2021). https://doi.org/10.1007/s11090-021-10177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10177-4

Keywords

Navigation