Skip to main content
Log in

ACI: a bar chart index for non-linear visualization of data embedding and aggregation capacity in IoMT multi-source compression

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Visualization of numerical results in computer communications is very important such that some very small differences are sometimes crucial, distinguishable, and descriptive for comparison among some state-of-the-art techniques. For the issue of data quality evaluation and compression rates in internet of multimedia things, there are many metrics traditionally, for instance, peak signal-to-noise ratio (PSNR) is strongly able to describe non-sensitive (and relatively ambiguous) results of mean square error and since PSNR is normally between 10 and 100 for most of the lossy techniques, it can plotted with using any graphical/visualization tool. However, the results of compression rates for aggregation techniques may be a little complicated on which using a non-flexible mathematical operator like logarithm may have an unsuitable effect with ignoring the small differences while plotting the results. The aim behind this paper is to introduce a new metric entitled average capacity index (ACI), as a non-linear visualization approach/scaling mechanism, to be usable in evaluating capacity results of data hiding and aggregation algorithms based on bar charts. Some examples with synthetic and real data will show that the proposed metric outperforms the existing conventional tools in terms of statistical measures and visual presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The experimental material for plotting all charts is available through the corresponding author.

References

  1. Zikria, Y. B., Afzal, M. K., & Kim, S. W. (2020). Internet of multimedia things (IoMT): Opportunities, challenges and solutions. Sensors. https://doi.org/10.3390/s20082334

    Article  Google Scholar 

  2. Alvi, S. A., Afzal, B., Shah, G. A., Atzori, L., & Mahmooda, W. (2015). Internet of multimedia things: Vision and challenges. Ad Hoc Networks, 33, 87–111

    Article  Google Scholar 

  3. Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., & Afzal, M. K. (2020). Multimedia Internet of Things: A Comprehensive Survey. IEEE Access, 8, 8202–8250

    Article  Google Scholar 

  4. C. Chen, Z. Liu, et al., Traffic Flow Prediction Based on Deep Learning in Industrial Internet of Vehicles, IEEE Transactions on Intelligent Transportation Systems, 2020.

  5. A. Zhou, S. Wang, et al., LMM: latency-aware micro-service mashup in mobile edge computing environment, Neural Computing and Applications, 2020.

  6. Xu, X., Liu, X., et al. (2020). Joint optimization of resource utilization and load balance with privacy preservation for edge services in 5G networks. Mobile Networks and Applications, 25, 713–724

    Article  Google Scholar 

  7. Liu, J., Wang, W., et al. (2019). Role of gifts in decision making: an endowment effect incentive mechanism for offloading in the IoV. IEEE Internet of Things Journal, 6(4), 6933–6951

    Article  Google Scholar 

  8. Dianat, R., Marvasti, F., Azmi, P., & Talebid, S. (2004). New vector quantization-based techniques for reducing the effect of channel noise in image transmission. Signal Processing, 84(11), 2153–2163

    Article  Google Scholar 

  9. Khosravi, M. R., & Samadi, S. (2019). "Data compression in ViSAR sensor networks using non-linear adaptive weighting. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-019-1577-z

    Article  Google Scholar 

  10. Watfa, M., Daher, W., & Azar, H. (2009). A Sensor Network Data Aggregation Technique. International Journal of Computer Theory and Engineering, 1(1), 1793–8201

    Google Scholar 

  11. Mohsenifard, E., & Ghaffari, A. (2016). Data Aggregation Tree Structure in Wireless Sensor Networks Using Cuckoo Optimization Algorithm. Journal of Information Systems and Telecommunication, 4(3), 182–190

    Google Scholar 

  12. Yoon, I., Kim, H., & Noh, D. K. (2017). Adaptive Data Aggregation and Compression to Improve Energy Utilization in Solar-Powered Wireless Sensor Networks. Sensors, 17, 1226. https://doi.org/10.3390/s17061226

    Article  Google Scholar 

  13. Ardakani, S. P., Padget, J., & Vos, M. D. (2016). A Mobile Agent Routing Protocol for Data Aggregation in Wireless Sensor Networks. International Journal of Wireless Information Networks. https://doi.org/10.1007/s10776-016-0327-y

    Article  Google Scholar 

  14. N. Goyal, M. Dave, A. K. Verma, Data aggregation in underwater wireless sensor network: Recent approaches and issues, Journal of King Saud University – Computer and Information Sciences 31: 275–286, 2019.

  15. Khosravi, M. R., & Samadi, S. (2020). Reliable Data Aggregation in Internet of ViSAR Vehicles Using Chained Dual-Phase Adaptive Interpolation and Data Embedding. IEEE Internet of Things Journal, 7(4), 2603–2610

    Article  Google Scholar 

  16. Khosravi, M. R., & Samadi, S. (2019). Efficient payload communications for IoT-enabled ViSAR vehicles using discrete cosine transform-based quasi-sparse bit injection. EURASIP Journal on Wireless Communications and Networking, 2019, 262

    Article  Google Scholar 

  17. Zhang, W., Liu, Y., Das, S. K., & De, P. (2008). Secure data aggregation in wireless sensor networks: A watermark based authentication supportive approach. Pervasive and Mobile Computing, 4, 658–680

    Article  Google Scholar 

  18. W. Zeng, P. Chen, Y. Yi, Private Aggregation Scheme based on Erasable Data-hiding in Wireless Sensor Networks, 2016 IEEE 4th International Conference on Future Internet of Things and Cloud, 2016. doi: https://doi.org/10.1109/FiCloud.2016.19

  19. Ren, J., Wu, G., & Yao, L. (2012). A sensitive data aggregation scheme for body sensor networks based on data hiding. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-012-0566-6

    Article  Google Scholar 

  20. Raja, M., & Datta, R. (2018). Efficient aggregation technique for data privacy in wireless sensor networks. IET Networks. https://doi.org/10.1049/iet-net.2017.0104

    Article  Google Scholar 

  21. M. R. Khosravi, S. Samadi, Modified Data Aggregation for Aerial ViSAR Sensor Networks in Transform Domain, The 25th Int'l Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'19), 2019; Las Vegas, USA.

  22. R. C. Gonzalez, R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.

  23. Jamshidi, A., Yazdi, M., & Manafi, M. (2017). Image Compression Based on Intelligent Information Removing and Inpainting Reconstruction Algorithms. Journal of Signal and Data Processing, 14(2), 97–114

    Article  Google Scholar 

  24. Keim, D. A., Hao, M. C., Dayal, U., & Hsu, M. (2002). Pixel bar charts: a visualization technique for very large multi-attribute data sets. Information Visualization, 1, 20–34

    Article  Google Scholar 

  25. Indratmo, L., Howorko, J. M., & Boedianto, B. (2018). Daniel. The efficacy of stacked bar charts in supporting single-attribute and overall-attribute comparisons, Visual Informatics, 2, 155–165

    Google Scholar 

  26. Cooper, L. L., & Shore, F. S. (2010). The Effects of Data and Graph Type on Concepts and Visualizations of Variability. Journal of Statistics Education, 18(2), 1–16

    Google Scholar 

  27. Weissgerber, T. L., Milic, N. M., Winham, S. J., & Garovic, V. D. (2015). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLOS Biology. https://doi.org/10.1371/journal.pbio.1002128

    Article  Google Scholar 

  28. He, Y., Yu, X., et al. (2017). Bar charts detection and analysis in biomedical publication. American Medical Informatics Association Annual Symposium Proceedings, 1, 859–865

    Google Scholar 

  29. Saket, B., Endert, A., et al. (2019). Task-Based Effectiveness of Basic Visualizations. IEEE Transactions on Visualization and Computer Graphics, 25(7), 2505–2512

    Article  Google Scholar 

  30. Khosravi, M. R., Akbarzadeh, O., et al. (2017). An introduction to ENVI tools for Synthetic Aperture Radar (SAR) image despeckling and quantitative comparison of denoising filters. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI, 2017, 212–215

    Google Scholar 

  31. Li, Y., Ma, H., Wang, L., Mao, S., & Wang, G. (2020). Optimized Content Caching and User Association for Edge Computing in Densely Deployed Heterogeneous Networks. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2020.3033563

    Article  Google Scholar 

  32. Li, Y., Xia, S., Zheng, M., Cao, B., & Liu, Q. (2019). Lyapunov Optimization Based Trade-Off Policy for Mobile Cloud Offloading in Heterogeneous Wireless Networks. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2019.2938504

    Article  Google Scholar 

  33. Li, Y., Liu, J., Cao, B., & Wang, C. (2018). Joint Optimization of Radio and Virtual Machine Resources with Uncertain User Demands in Mobile Cloud Computing. IEEE Transactions on Multimedia, 20(9), 2427–2438

    Article  Google Scholar 

  34. Li, Y., Liao, C., Wang, C., & Wang, Y. (2015). Energy-Efficient Optimal Relay Selection in Cooperative Cellular Networks Based on Double Auction. IEEE Transactions on Wireless Communications, 14(8), 4093–4104

    Article  Google Scholar 

  35. X. Li, H. Mengyan, Y. Liu, V. G. Menon, A. Paul, Z. Ding, I/Q Imbalance Aware Nonlinear Wireless-Powered Relaying of B5G Networks: Security and Reliability Analysis, IEEE Transactions on Network Science and Engineering, 2020.

  36. H. Zhang, M. Babar, M. U. Tariq, M. A. Jan, V. G. Menon, X. Li, SafeCity: Toward Safe and Secured Data Management Design for IoT-enabled Smart City Planning, IEEE Access, 2020.

  37. B. Liu, X. Xu, L. Qi, Q. Ni, W. Dou, Task scheduling with precedence and placement constraints for resource utilization improvement in multi-user MEC environment, Journal of Systems Architecture, 2020.

  38. H. Kou, H. Liu, Y. Duan, W. Gong, Y. Xu, X. Xu, L. Qi, Building trust/distrust relationships on signed social service network through privacy-aware link prediction process, Applied Soft Computing, 2020.

  39. Khosravi, M. R., Samadi, S., & Akbarzadeh, O. (2017). Determining the optimal range of angle tracking radars. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI, 2017, 3132–3135

    Google Scholar 

  40. Khosravi, M. R., & Yazdi, M. (2018). A lossless data hiding scheme for medical images using a hybrid solution based on IBRW error histogram computation and quartered interpolation with greedy weights. Neural Computing and Applications, 30, 2017–2028

    Article  Google Scholar 

  41. Tavallali, P., Tavallali, P., & Singhal, M. (2020). K-means tree: an optimal clustering tree for unsupervised learning. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03436-2

    Article  Google Scholar 

  42. P. Tavallali, P. Tavallali, M. R. Khosravi, M. Singhal, Interpretable Synthetic Reduced Nearest Neighbor: An Expectation Maximization Approach, IEEE International Conference on Image Processing (ICIP), 2020.

  43. Goyal, S., Bhushan, S., Kumar, Y., Bhutta, M. R., Ijaz, M. F., & Son, Y. (2021). An Optimized Framework for Energy-Resource Allocation in a Cloud Environment based on the Whale Optimization Algorithm. Sensors, 21(5), 1583

    Article  Google Scholar 

  44. J. Tamang, J. D. D. Nkapkop, M. F. Ijaz, P. K. Prasad, N. Tsafack, A. Saha, Dynamical properties of ion-acoustic waves in space plasma and its application to image encryption, IEEE Access, 2021.

  45. Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., & Ijaz, M. F. (2020). Analytical study of hybrid techniques for image encryption and decryption. Sensors, 20(18), 5162

    Article  Google Scholar 

Download references

Funding

There is no funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Khosravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M.R. ACI: a bar chart index for non-linear visualization of data embedding and aggregation capacity in IoMT multi-source compression. Wireless Netw (2021). https://doi.org/10.1007/s11276-021-02626-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-021-02626-x

Keywords

Navigation