Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plume-driven recratonization of deep continental lithospheric mantle

Abstract

Cratons are Earth’s ancient continental land masses that remain stable for billions of years. The mantle roots of cratons are renowned as being long-lived, stable features of Earth’s continents, but there is also evidence of their disruption in the recent1,2,3,4,5,6 and more distant7,8,9 past. Despite periods of lithospheric thinning during the Proterozoic and Phanerozoic eons, the lithosphere beneath many cratons seems to always ‘heal’, returning to a thickness of 150 to 200 kilometres10,11,12; similar lithospheric thicknesses are thought to have existed since Archaean times3,13,14,15. Although numerous studies have focused on the mechanism for lithospheric destruction2,5,13,16,17,18,19, the mechanisms that recratonize the lithosphere beneath cratons and thus sustain them are not well understood. Here we study kimberlite-borne mantle xenoliths and seismology across a transect of the cratonic lithosphere of Arctic Canada, which includes a region affected by the Mackenzie plume event 1.27 billion years ago20. We demonstrate the important role of plume upwelling in the destruction and recratonization of roughly 200-kilometre-thick cratonic lithospheric mantle in the northern portion of the Slave craton. Using numerical modelling, we show how new, buoyant melt residues produced by the Mackenzie plume event are captured in a region of thinned lithosphere between two thick cratonic blocks. Our results identify a process by which cratons heal and return to their original lithospheric thickness after substantial disruption of their roots. This process may be widespread in the history of cratons and may contribute to how cratonic mantle becomes a patchwork of mantle peridotites of different age and origin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geological map and lithospheric thickness of the Slave craton and surrounding areas, and Os model ages of Slave-craton peridotites.
Fig. 2: Whole-rock Yb versus Al2O3 content for Slave peridotites.
Fig. 3: Numerical modelling of plume residues filling a thin spot between thick cratonic lithospheric roots.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://doi.org/10.6084/m9.figshare.13789354. Source data are provided with this paper.

Code availability

The code for geodynamic modelling is available on reasonable request to the corresponding author.

References

  1. Menzies, M. A., Fan, W.-M. & Zhang, M. in Magmatic Processes and Plate Tectonics (eds Prichard, H. M. et al.) 71–81 (Geological Society, 1993).

  2. Griffin, W. L., Zhang, A. D., O’Reilly, S. Y. & Ryan, C. G. in Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M. et al.) 107–126 (American Geophysical Union, 1998).

  3. Griffin, W. L. et al. The origin and evolution of Archean lithospheric mantle. Precambr. Res. 127, 19–41 (2003).

    Article  ADS  CAS  Google Scholar 

  4. Carlson, R. W., Irving, A. J., Schulze, D. J. & Hearn, B. C. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos 77, 453–472 (2004).

    Article  ADS  CAS  Google Scholar 

  5. Peace, A., Foulger, G., Schiffer, C. & McCaffrey, K. Evolution of Labrador Sea- Baffin Bay: plate or plume processes? Geosci. Can. 44, 91–102 (2017).

    Article  Google Scholar 

  6. Kopylova, M. G., Tso, E., Ma, F., Liu, J. & Pearson, D. G. The Metasomatized Mantle beneath the North Atlantic Craton: insights from Peridotite Xenoliths of the Chidliak Kimberlite Province (NE Canada). J. Petrol. 60, 1991–2024 (2019).

    Article  ADS  CAS  Google Scholar 

  7. James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & Group, K. S. Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28, 2485–2488 (2001).

    Article  ADS  Google Scholar 

  8. Hanson, R. E. et al. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science 304, 1126–1129 (2004).

    Article  ADS  CAS  Google Scholar 

  9. Ernst, R. E., Wingate, M. T. D., Buchan, K. L. & Li, Z. X. Global record of 1600–700Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr. Res. 160, 159–178 (2008).

    Article  ADS  CAS  Google Scholar 

  10. James, D. E. & Fouch, M. J. Formation and evolution of Archaean cratons: insights from southern Africa. Geol. Soc. Lond. Spec. Publ. 199, 1–26 (2002).

    Article  ADS  Google Scholar 

  11. Snyder, D. B., Humphreys, E. & Pearson, D. G. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485 (2017).

    Article  ADS  CAS  Google Scholar 

  12. Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet. Sci. Lett. 402, 26–41 (2014).

    Article  ADS  CAS  Google Scholar 

  13. Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

    Article  ADS  CAS  Google Scholar 

  14. Aulbach, S. Craton nucleation and formation of thick lithospheric roots. Lithos 149, 16–30 (2012).

    Article  ADS  CAS  Google Scholar 

  15. Perchuk, A. L., Gerya, T. V., Zakharov, V. S. & Griffin, W. L. Building cratonic keels in Precambrian plate tectonics. Nature 586, 395–401 (2020).

    Article  ADS  CAS  Google Scholar 

  16. Foley, S. F. Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1, 503–510 (2008).

    Article  ADS  CAS  Google Scholar 

  17. Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16, 1156–1171 (2015).

    Article  ADS  Google Scholar 

  18. Hu, J. et al. Modification of the Western Gondwana craton by plume–lithosphere interaction. Nat. Geosci. 11, 203–210 (2018); publisher correction 11, 544 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Wu, F.-Y., Yang, J.-H., Xu, Y.-G., Wilde, S. A. & Walker, R. J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 47, 173–195 (2019).

    Article  ADS  CAS  Google Scholar 

  20. LeCheminant, A. N. & Heaman, L. M. Mackenzie igneous events, Canada: middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet. Sci. Lett. 96, 38–48 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Shirey, S. et al. in Deep Mantle Carbon Evolution from the Diamond Record (eds Orcutt, B. N. et. al) Ch. 5, 89–128 (Cambridge Univ. Press, 2019).

  22. Pearson, D. G. & Wittig, N. in Treatise of Geochemistry 2nd edn, Vol. 3, (Holland, H. D. & Turekian, K. K.) Ch. 3.6, 255–292 (Elsevier, 2014).

  23. Smit, K. V., Pearson, D. G., Stachel, T. & Seller, M. Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the northern Superior Superterrane. J. Petrol. 55, 1829–1863 (2014).

    Article  ADS  CAS  Google Scholar 

  24. Bleeker, W. Archaean tectonics: a review, with illustrations from the Slave craton. Geol. Soc. Spec. Publ. 199, 151–181 (2002).

    Article  ADS  Google Scholar 

  25. Westerlund, K. J. et al. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib. Mineral. Petrol. 152, 275 (2006).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Hoffman, P. F. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 16, 543–603 (1988).

    Article  ADS  Google Scholar 

  27. Liu, J. et al. Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: a study of mantle xenoliths from Parry Peninsula and Central Victoria Island. Geochim. Cosmochim. Acta 239, 284–311 (2018).

    Article  ADS  CAS  Google Scholar 

  28. Schmidberger, S. S. et al. Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet. Sci. Lett. 254, 55–68 (2007).

    Article  ADS  CAS  Google Scholar 

  29. Ootes, L. et al. Pyroxenitic magma conduits (ca. 1.86 Ga) in Wopmay orogen and Slave craton: petrogenetic constraints from whole rock and mineral chemistry. Lithos 354–355, 105220 (2020).

    Article  Google Scholar 

  30. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Ernst, R. E. & Baragar, W. R. A. Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356, 511–513 (1992).

    Article  ADS  Google Scholar 

  32. Mather, K. A., Pearson, D. G., McKenzie, D., Kjarsgaard, B. A. & Priestley, K. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125, 729–742 (2011).

    Article  ADS  CAS  Google Scholar 

  33. Rudnick, R. L. & Walker, R. J. Interpreting ages from Re-Os isotopes in peridotites. Lithos 112, 1083–1095 (2009).

    Article  ADS  Google Scholar 

  34. Aulbach, S. et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem. Geol. 208, 61–88 (2004).

    Article  ADS  CAS  Google Scholar 

  35. Pearson, D. G., Canil, D. & Shirey, S. B. in Treatise of Geochemistry 2nd edn, Vol. 3 (Holland, H. D. & Turekian, K. K.) Ch. 3.5, 169–253 (Elsevier, 2014).

  36. Day, J. M. D., Pearson, D. G. & Hulbert, L. J. Rhenium-osmium isotope and platinum-group element constraints on the origin and evolution of the 1.27 Ga Muskox layered intrusion. J. Petrol. 49, 1255–1295 (2008).

    Article  ADS  CAS  Google Scholar 

  37. Thompson, R. N. & Gibson, S. A. Subcontinental mantle plumes, hotspots and pre-existing thinspots. J. Geol. Soc. Lond. 148, 973–977 (1991).

    Article  Google Scholar 

  38. Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Wittig, N. et al. Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24–33 (2008).

    Article  ADS  CAS  Google Scholar 

  40. Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. Solid Earth 102, 10001–10012 (1997).

    Article  Google Scholar 

  41. Stachel, T. et al. The Victor Mine (Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root. Mineral. Petrol. 112, 325–336 (2018).

    Article  ADS  CAS  Google Scholar 

  42. Hanson, R. E., Martin, M. W., Bowring, S. A. & Munyanyiwa, H. U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa–East Antarctica and possible Rodinia correlations. Geology 26, 1143–1146 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

    Article  ADS  Google Scholar 

  44. Liu, J. et al. Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambr. Res. 272, 168–184 (2016).

    Article  ADS  CAS  Google Scholar 

  45. Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    Article  ADS  CAS  Google Scholar 

  46. Kjarsgaard, B. A. in Decade of North American Geology Vol. P1 (eds Eckstrand, O. R. et al.) 557–566 (Geological Survey of Canada, 1995).

  47. Steinberger, B. & Becker, T. W. A comparison of lithospheric thickness models. Tectonophysics 746, 325–338 (2018).

    Article  ADS  Google Scholar 

  48. Graham, I. et al. Exploration history and geology of the Diavik kimberlites, Lac de Gras, Northwest Territories, Canada. In Proc. 7th International Kimberlite Conference Vol. 1 (eds Gurney, J. J. et al.) 262–279 (Red Roof Design, 1999).

  49. Heaman, L. M., Creaser, R. A. & Cookenboo, H. O. Extreme high-field-strength element enrichment in Jericho eclogite xenoliths: a cryptic record of Paleoproterozoic subduction, partial melting and metasomatism beneath the Slave craton, Canada. Geology 30, 507–510 (2002).

    Article  ADS  CAS  Google Scholar 

  50. Armstrong, J. P., Fitzgerald, C. E., Kjarsgaard, B. A., Heaman, L. & Tappe, S. Kimberlites of the Coronation Gulf field, northern Slave craton, Nunanvut Canada. In 10th International Kimberlite Conference, Extended Abstracts abstr. 10IKC-170 (2012); https://doi.org/10.29173/ikc3723.

  51. Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).

    Article  ADS  CAS  Google Scholar 

  52. Kopylova, M. G. & Russell, J. K. Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet. Sci. Lett. 181, 71–87 (2000).

    Article  ADS  CAS  Google Scholar 

  53. Boyd, F. R. & Mertzman, S. A. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 13–24 (Geochemical Society, 1987).

  54. Ottley, C. J., Pearson, D. G. & Irvine, G. J. in Plasma Source Mass Spectrometry: Applications and Emerging Technologies (eds Holland, J. G. & Tanner, S. D.) 221–230 (Royal Society of Chemistry, 2003).

  55. Harris, G. A. et al. Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae Craton. Mineral. Petrol. 112, 57–70 (2018).

    Article  ADS  CAS  Google Scholar 

  56. Pearson, D. G. & Woodland, S. J. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chem. Geol. 165, 87–107 (2000).

    Article  ADS  CAS  Google Scholar 

  57. Liu, J. & Pearson, D. G. Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS. Chem. Geol. 363, 301–311 (2014).

    Article  ADS  CAS  Google Scholar 

  58. Luguet, A., Nowell, G. M. & Pearson, D. G. Os-184/Os-188 and Os-186/Os-188 measurements by negative thermal ionisation mass spectrometry (N-TIMS): effects of interfering element and mass fractionation corrections on data accuracy and precision. Chem. Geol. 248, 342–362 (2008).

    Article  ADS  CAS  Google Scholar 

  59. Grütter, H. S. Pyroxene xenocryst geotherms: techniques and application. Lithos 112 (Suppl. 2) 1167–1178 (2009).

    Article  ADS  Google Scholar 

  60. Lebedev, S., Nolet, G., Meier, T. & Van Der Hilst, R. D. Automated multimode inversion of surface and S waveforms. Geophys. J. Int. 162, 951–964 (2005).

    Article  ADS  Google Scholar 

  61. Lebedev, S. & Van Der Hilst, R. D. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int. 173, 505–518 (2008).

    Article  ADS  Google Scholar 

  62. Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).

    Article  ADS  Google Scholar 

  63. Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).

    Article  ADS  MATH  Google Scholar 

  64. Zhong, S., Zuber, M. T., Moresi, L. & Gurnis, M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. Solid Earth 105, 11063–11082 (2000).

    Article  Google Scholar 

  65. van Hunen, J., Zhong, S., Shapiro, N. M. & Ritzwoller, M. H. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett. 238, 146–155 (2005).

    Article  ADS  Google Scholar 

  66. Christensen, U. R. & Yuen, D. A. Layered convection induced by phase transitions. J. Geophys. Res. Solid Earth 90, 10291–10300 (1985).

    Article  Google Scholar 

  67. King, S. D. et al. A community benchmark for 2‐D Cartesian compressible convection in the Earth’s mantle. Geophys. J. Int. 180, 73–87 (2010).

    Article  ADS  Google Scholar 

  68. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    Article  ADS  Google Scholar 

  69. Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. Solid Earth 111, B05401 (2006).

    Article  ADS  Google Scholar 

  70. Kennedy, C. S. & Kennedy, G. C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 81, 2467–2470 (1976).

    Article  ADS  CAS  Google Scholar 

  71. Day, H. W. A revised diamond-graphite transition curve. Am. Mineral. 97, 52–62 (2012).

    Article  ADS  CAS  Google Scholar 

  72. McDonough, W. F. & Sun, S. S. The Composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

  73. Heaman, L. M., LeCheminant, A. N. & Rainbird, R. H. Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet. Sci. Lett. 109, 117–131 (1992).

    Article  ADS  CAS  Google Scholar 

  74. Mackinder, A., Cousens, B. L., Ernst, R. E. & Chamberlain, K. R. Geochemical, isotopic, and U–Pb zircon study of the central and southern portions of the 780 Ma Gunbarrel Large Igneous Province in western Laurentia. Can. J. Earth Sci. 56, 738–755 (2019).

    Article  ADS  CAS  Google Scholar 

  75. Wingate, M., Pirajno, F. & Morris, P. Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32, 105–108 (2004).

    Article  ADS  Google Scholar 

  76. Fishwick, S. & Reading, A. M. Anomalous lithosphere beneath the Proterozoic of western and central Australia: a record of continental collision and intraplate deformation? Precambr. Res. 166, 111–121 (2008).

    CAS  Google Scholar 

  77. Rudnick, R. & Nyblade, A. A. The thickness and heat production of Archean lithosphere, constraints from xenolith thermobarometry and surface heat flow. Geochem. Soc. Spec. Publ. 6, 3–12 (1999).

    Google Scholar 

  78. Pidgeon, R. T. & Cook, T. J. F. 1214 ± 5 Ma dyke from the Darling Range, southwestern Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 50, 769–773 (2003).

    Article  ADS  Google Scholar 

  79. Wang, X.-C., Li, Z.-X., Li, J., Pisarevsky, S. A. & Wingate, M. T. D. Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction. Precambr. Res. 241, 85–103 (2014).

    Article  ADS  CAS  Google Scholar 

  80. Geissler, W., Sodoudi, F. & Kind, R. Thickness of the Central and Eastern European lithosphere as seen by S receiver functions. Geophys. J. Int. 181, 604–634 (2010).

    ADS  Google Scholar 

  81. Puchkov, V. et al. The ca. 1380 Ma Mashak igneous event of the Southern Urals. Lithos 174, 109–124 (2013).

    Article  ADS  CAS  Google Scholar 

  82. Stark, J. C. et al. 1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton. Precambr. Res. 316, 291–304 (2018).

    Article  ADS  CAS  Google Scholar 

  83. Youbi, N. et al. The 1750Ma Magmatic Event of the West African Craton (Anti-Atlas, Morocco). Precambr. Res. 236, 106–123 (2013).

    Article  ADS  CAS  Google Scholar 

  84. Jessell, M., Begg, G. & Miller, M. The geophysical signatures of the West African Craton. Precambr. Res. 274, 3–24 (2016).

    Article  ADS  CAS  Google Scholar 

  85. Feng, M., van der Lee, S. & Assumpção, M. Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. J. Geophys. Res. Solid Earth 112, B04312 (2007).

    Article  ADS  Google Scholar 

  86. Reis, N. J. et al. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos 174, 175–195 (2013).

    Article  ADS  CAS  Google Scholar 

  87. French, J. E., Heaman, L. M., Chacko, T. & Srivastava, R. K. 1891–1883Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambr. Res. 160, 308–322 (2008).

    Article  ADS  CAS  Google Scholar 

  88. Maurya, S. et al. Imaging the lithospheric structure beneath the Indian continent. J. Geophys. Res. Solid Earth 121, 7450–7468 (2016).

    Article  ADS  Google Scholar 

  89. Shellnutt, J. G., Hari, K. R., Liao, A. C. Y., Denyszyn, S. W. & Vishwakarma, N. A. 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia. Precambr. Res. 308, 58–74 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Li, Y. Sun, Y. Xu, Y. Luo, R. Cai, K. Zong, S. Woodland, G. Nowell, S. Jackson and C. Sarkar for help with analytical matters. This research was financially supported by the National Natural Science Foundation of China (41822301, 41790451, 41730214), China “1000 Youth Talents Program” and the 111 project (B18048) to J.L., by the Geomapping for Energy & Minerals program (Diamond project) of the Geological Survey of Canada (B.A.K. and D.G.P.) and the Canada Excellence Research Chairs program to D.G.P., and by the National Key R&D Program of China (2019YFA0708400, 2020YFA0714800 and 2019YFC0605403). This is GSC contribution number 20200737 and CUGB petrogeochemical contribution number PGC20150068 (RIG-no. 9).

Author information

Authors and Affiliations

Authors

Contributions

D.G.P., J.L. and B.A.K. conceived and designed the study. J.L., D.G.P. and B.A.K. wrote the manuscript and contributed to data interpretation. J.L., K.A.M., G.J.I. and B.A.K. conducted the analyses and data reduction. L.H.W performed numerical modelling. A.J.S. conducted the seismic modelling. All authors contributed to interpreting the data and writing the paper.

Corresponding author

Correspondence to Jingao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Stephen Foley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Characteristics of seismic velocity in the Slave craton and surrounding areas.

a, Map of seismic velocity from SL2013NA12 at 150 km depth, shown as the percentage variation from the reference velocity of 4.39 km s−1 (colour scale). Because this location is in the middle of the stable cratonic shield, the velocities are dominated by positive perturbations, indicative of the colder and stronger cratonic mantle lithosphere. b, Map of the maximum lateral gradient in seismic velocity from SL2013NA12 at 150 km depth, shown as the percentage variation in velocity per 100 km laterally (colour scale). Because this location is in the middle of the stable cratonic shield, the gradients in velocity are lower than at the craton margins or in actively deforming regions. The highest gradients are associated with the northern boundary of the stable cratonic mantle lithosphere north of Victoria Island. A small but non-zero gradient in velocity is observed trending north–northwest from Jericho–Artemisia through western Victoria Island, largely coincident with the main strike of the Mackenzie dyke swarm. Artemisia lies in a region with shorter-scale lateral variations, which suggests that it could have a slightly more fertile composition (as shown by the slightly lower median whole-rock Mg content of 90.4 versus 91.0; Supplementary Table 1) than other Slave localities. White lines in a and b denote the boundaries of the Archaean and Palaeoproterozoic tectonic domains (as in Fig. 1); kimberlite pipes are indicated as in Fig. 1a (stars).

Extended Data Fig. 2 Box-and-whisker plot of anhydrous whole-rock Al2O3 content of Slave-craton peridotites.

Data are provided in Supplementary Table 1. Global on-craton peridotite data are from the literature22. PM, primitive mantle.

Source data

Extended Data Fig. 3 Palaeogeotherms.

Calculated clinopyroxene thermobarometry pressure–temperature (PT) data from xenoliths and till concentrates of the Slave craton (Supplementary Table 6) are fitted to define a mantle geotherm (solid line, with shading representing the 2σ error envelope) using the FITPLOT (parameters are shown in Extended Data Table 2) method32. The left panel shows the cases for Diavik (n = 65) and Jericho (n = 39); the right panel shows those of Parry Peninsula (n = 362) and Central Victoria Island (n = 196) (data from ref. 27). Despite no fresh pyroxene minerals to allow a pressure–temperature calculation in Artemisia, application of the Ni-in-garnet thermometer (Supplementary Table 5) defines the sampled range of lithospheric mantle depths when extrapolated to the palaeogeotherms from other Slave localities in light of the diamondiferous feature in these kimberlites; therefore, the lithosphere thickness beneath Artemisia may be assumed to be similar to that beneath the nearby Jericho. The diamond and graphite transitions from ref. 70 and ref. 71, respectively, are plotted for reference.

Source data

Extended Data Fig. 4 Chondrite-normalized whole-rock rare-earth element patterns for Slave peridotites.

Data are provided in Supplementary Table 1. All the Slave peridotites show enrichments of light to middle rare-earth elements relative to heavy rare-earth elements. The data for CI chondrites are from ref. 72.

Source data

Extended Data Fig. 5 Whole-rock Yb versus Lu content for Slave peridotites.

Curves show the trajectories of residual mantle after polybaric fractional melting, beginning at 2 GPa (spinel facies; orange), 3 GPa (shallow garnet facies; red) and 7 GPa (deep garnet facies; blue). The partial melting calculations followed those in ref. 39, supplementary material C. Unlike all other reported cratonic peridotites, the very high Lu and Yb (heavy rare-earth element) abundances of Artemisia peridotites clearly indicate initial melting in the presence of high modal garnet, that is, ultradeep plume melting. The previously published data from the North Atlantic, Rae and Kaapvaal cratons39 are plotted for comparison. PM, primitive mantle.

Source data

Extended Data Fig. 6 Modelling with different depletion buoyancy and strengthening at around 400 Myr.

ad, Temperature and depletion field at around 400 Myr for models with different depletion buoyancy and strengthening (a, B1; b, B2; c, B3; d, V1). The depletion field is a combination of the compositional field of the cratonic root and melt depletion. Melt-induced depletion buoyancy of the plume residue has an important role and depends on αd: the smaller αd is, the more buoyant the plume residue becomes; Δη is the viscosity strengthening factor due to melt depletion. e, f, The composition field of the cratonic root at around 400 Myr for models R (e) and B3 (f). The sequence shows that, within the parameters of the model, part of the cratonic root can be eroded by plume flow and then become involved in the formation of new lithosphere at the thin spot. Vertical and horizontal axes are in kilometres.

Extended Data Fig. 7 Growth scenarios of cratonic lithosphere when a plume hits.

a, Modelling an example with normal lithosphere at two side boundaries. b, Modelling an example with plume not under the thin spot between two cratons. The parameters for plume residue are αd = −0.03%, Δη = 3 (a) and αd = −0.02%, Δη = 1 (b). These two examples show that the proposed mechanism can lead to the growth of cratonic lithosphere in more general situations. Vertical and horizontal axes are in kilometres.

Extended Data Fig. 8 Thickness evolution of the thin spot between two cratons as defined by the 1,300 °C isotherm.

Without any viscosity strengthening, the lithosphere thickness may grow to approximately 200 km with high depletion buoyancy in models R and B3. With slight viscosity strengthening, intermediate buoyancy may also fill and stabilize the thin spot to around 200 km.

Extended Data Fig. 9 Relationship between whole-rock Yb content and 187Os/188Os calculated at the time of kimberlite eruption or TRD eruption.

Data are provided in Supplementary Table 1. PUM, primitive upper mantle.

Source data

Extended Data Table 1 Summary of major Proterozoic large igneous provinces and their impact on cratons
Extended Data Table 2 FITPLOT parameters used for constructing palaeogeotherms

Supplementary information

Peer Review File

Supplementary Video 1

Temperature and viscosity evolution of the mantle hit by a plume. The video shows the evolution of temperature and viscosity field of the mantle through time when a hot plume hits the lithospheric thin-spot between two cratons.

Supplementary Video 2

Temperature and melt depletion evolution of the mantle hit by a plume. The video shows the evolution of temperature and melt depletion field of the mantle through time when a hot plume hits the lithospheric thin-spot between two cratons.

Supplementary Table 1

Whole rock major, trace, and Re-Os data of the peridotite xenoliths from Arctic Canada.

Supplementary Table 2

Whole-rock major element contents (wt%) for reference materials determined using XRF technique.

Supplementary Table 3

Whole-rock trace element contents (ppm) for reference materials.

Supplementary Table 4

Mineral major element contents (wt%) of the Slave peridotites measured in this study.

Supplementary Table 5

Garnet in situ trace element concentrations (ppb) determined by LA-ICP-MS.

Supplementary Table 6

P-T data used for constructing palaeogeotherms.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Pearson, D.G., Wang, L.H. et al. Plume-driven recratonization of deep continental lithospheric mantle. Nature 592, 732–736 (2021). https://doi.org/10.1038/s41586-021-03395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03395-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing