Skip to main content
Log in

Effect of Non-uniformity on Time-of-Flight Measurement of Critically Refracted Longitudinal Waves for Stress Evaluations of Carbon Composite Materials

  • Review paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

Acoustoelasticity is an inexpensive and reliable technique for measuring stresses in mechanical structures, provided the influencing factors are controlled. However, ultrasonic waves propagating inside solid bodies are affected by temperature, roughness, differences in microstructure, defects, and others. Non-uniformity is one of the most influential characteristics as it is difficult to evaluate. In this study, experiments were performed to assess the time-of-flight (TOF) of critically refracted longitudinal (Lcr) waves traveling in different regions of a unidirectional carbon-epoxy sample with allowable manufacturing non-uniformities using transducers of 1 MHz and 3.5 MHz to vary the depth of propagation. A phased array system (PAS) with transducers of 5 and 10 MHz was used to identify the regions with non-uniformities in the structure through the signal-to-noise ratio (SNR) and B-Scan images. The material under test is a unidirectional composite bar made of carbon fibers (HexTow® AS4) pre-impregnated with epoxy matrix (HexPly® 8552). The investigation shows that the TOF of the Lcr wave and the SNR results can be linearly related, for an optimized configuration. Therefore, the influence of non-uniformities can be removed from TOF using SNR values. Based on the results, a coupled PAS-Lcr ultrasonic system is proposed to measure stress in composites, including those with non-uniformities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Honarvar F, Varvani-Farahani A (2020) A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control. Ultrasonics 108:106227. https://doi.org/10.1016/j.ultras.2020.106227

    Article  CAS  Google Scholar 

  2. Dwyer-Joyce RS (2005) The application of ultrasonic NDT techniques in tribology. Proc Inst Mech Eng Part J J Eng Tribol 219:347–366. https://doi.org/10.1243/135065005X9763

    Article  Google Scholar 

  3. Gholizadeh S (2016) A review of non-destructive testing methods of composite materials. Procedia Struct Integr 1:50–57. https://doi.org/10.1016/j.prostr.2016.02.008

    Article  Google Scholar 

  4. Smith RA, Mukhopadhyay S, Lawrie A, Hallett SR (2013) Applications of ultrasonic NDT to aerospace composites. 5th Int Symp NDT Aerosp 44:13–15

  5. Drinkwater BW, Wilcox PD (2006) Ultrasonic arrays for non-destructive evaluation: a review. NDT E Int 39:525–541. https://doi.org/10.1016/j.ndteint.2006.03.006

    Article  CAS  Google Scholar 

  6. Tanala E, Bourse G, Fremiot M, De Belleval JF (1995) Determination of near surface residual stresses on welded joints using ultrasonic methods. NDT E Int 28:83–88. https://doi.org/10.1016/0963-8695(94)00013-A

    Article  CAS  Google Scholar 

  7. Duquennoy M, Ouaftouh M, Ourak M (1999) Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves. NDT E Int 32:189–199. https://doi.org/10.1016/S0963-8695(98)00046-2

    Article  Google Scholar 

  8. Buenos AA, Pereira · P, Dos Santos AA, Mei PR (2014) Influence of grain size on the propagation of L CR waves in low carbon steel. J Nondestruct Eval 33:562–570 . https://doi.org/10.1007/s10921-014-0252-x

  9. Santos AA, Ambiel LB, Garcia RH, Rodovalho TG (2013) Stress analysis in carbon/epoxy composites using Lcr waves. J Compos Mater. https://doi.org/10.1177/0021998313509866

  10. Zhu Q, Chen J, Gou G, Chen H, Li P (2017) Ameliorated longitudinal critically refracted—attenuation velocity method for welding residual stress measurement. J Mater Process Technol 246:267–275. https://doi.org/10.1016/j.jmatprotec.2017.03.022

    Article  Google Scholar 

  11. Hughes D, Kelly JL (1953) Second-order elastic deformations of solids. Phys Rev 92:1145–1150. https://doi.org/10.1103/PhysRev.92.1145

    Article  Google Scholar 

  12. Bray DE, Tang W (2001) Subsurface stress evaluation in steel plates and bars using the Lcr ultrasonic wave. Nucl Eng Des 207:231–240. https://doi.org/10.1016/S0029-5493(01)00334-X

    Article  CAS  Google Scholar 

  13. Pearson LH, Murri WJ (1987) Measurement of ultrasonic Wavespeeds in off-Axis directions of composite materials. Rev Prog Quant Nondestruct Eval:1093–1101. https://doi.org/10.1007/978-1-4613-1893-4_125

  14. Baudouin S, Hosten B (1996) Immersion ultrasonic method to measure elastic constants and anisotropic attenuation in polymer-matrix and fiber-reinforced composite materials. Ultrasonics 34:379–382. https://doi.org/10.1016/0041-624X(96)00021-2

    Article  CAS  Google Scholar 

  15. Qozam H, Chaki S, Bourse G, Robin C, Walaszek H, Bouteille P (2010) Microstructure effect on the Lcr elastic wave for welding residual stress measurement. Exp Mech 50:179–185. https://doi.org/10.1007/s11340-009-9283-0

    Article  Google Scholar 

  16. Mouchtachi A, El Guerjouma R, Baboux JC, Santini P, Merle P, Bouami D (2004) Ultrasonic study of elastic anisotropy of material composite. Appl Compos Mater 11:341–351. https://doi.org/10.1023/B:ACMA.0000045311.02306.7a

    Article  CAS  Google Scholar 

  17. Egle DM, Bray DE (1976) Measurement of acoustoelastic and third-order elastic constants for rail steel. J Acoust Soc Am 60:741–744. https://doi.org/10.1121/1.381146

    Article  Google Scholar 

  18. Belahcene F, Lu J (2002) Determination of residual stress using critically refracted longitudinal waves and immersion mode. J Strain Anal Eng Des 37:13–20. https://doi.org/10.1243/0309324021514790

    Article  Google Scholar 

  19. Javadi Y (2013) Ultrasonic measurement of hoop residual stress in stainless steel pipes. Manuf. Ind Eng 12:1–6. https://doi.org/10.12776/mie.v12i1-2.175

    Article  Google Scholar 

  20. Fraga R, Andrino M, Santos A (2009) Evaluation of penetration depth of Lcr waves for stress measurement. In: Internationl conference on integrity, reliability and failure. Porto, Potugal, pp 20–24

    Google Scholar 

  21. Kröning M, Bulavinov A, Reddy KM, von Bernus L, Joneit D (2007) Sampling phased array: a new technique for signal processing and ultrasonic imaging. In: Wu HF, Diaz AA, Shull PJ (eds) nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security 2007. P 653119

  22. Balasubramaniam K, Whitney SC (1996) Ultrasonic through-transmission characterization of thick fibre-reinforced composites. NDT E Int 29:225–236. https://doi.org/10.1016/S0963-8695(96)00014-X

    Article  CAS  Google Scholar 

  23. Zhang J, Drinkwater BW, Wilcox PD, Hunter AJ (2010) Defect detection using ultrasonic arrays: the multi-mode total focusing method. NDT E Int 43:123–133. https://doi.org/10.1016/j.ndteint.2009.10.001

    Article  CAS  Google Scholar 

  24. Muller A, Robertson-Welsh B, Gaydecki P, Gresil M, Soutis C (2017) Structural health monitoring using lamb wave reflections and Total focusing method for image reconstruction. Appl Compos Mater 24:553–573. https://doi.org/10.1007/s10443-016-9549-5

    Article  Google Scholar 

  25. Vavilov VP, Kuimova MV (2019) Dynamic thermal tomography of composites: a comparison of reference and reference-free approaches. J Nondestruct Eval 38:2. https://doi.org/10.1007/s10921-018-0540-y

    Article  Google Scholar 

  26. Forero-Ramírez J-C, Restrepo-Girón A-D, Nope-Rodríguez S-E (2019) Detection of internal defects in carbon Fiber reinforced plastic slabs using background thermal compensation by filtering and support vector machines. J Nondestruct Eval 38:33. https://doi.org/10.1007/s10921-019-0569-6

    Article  Google Scholar 

  27. Li C, Pain D, Wilcox PD, Drinkwater BW (2013) Imaging composite material using ultrasonic arrays. NDT E Int 53:8–17. https://doi.org/10.1016/j.ndteint.2012.07.006

    Article  Google Scholar 

  28. Humeida Y, Pinfield VJ, Challis RE, Wilcox PD, Li C (2013) Simulation of ultrasonic array imaging of composite materials with defects. IEEE Trans Ultrason Ferroelectr Freq Control 60:1935–1948. https://doi.org/10.1109/TUFFC.2013.2778

    Article  Google Scholar 

  29. Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38:852–857. https://doi.org/10.1002/mrm.1910380524

    Article  CAS  Google Scholar 

  30. Rizzo P, Lanza di Scalea F (2003) Effect of frequency on the acoustoelastic response of steel bars. Exp Tech 27:40–43. https://doi.org/10.1111/j.1747-1567.2003.tb00136.x

    Article  Google Scholar 

  31. Wronkowicz A, Dragan K, Lis K (2018) Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos Struct 203:71–84. https://doi.org/10.1016/J.COMPSTRUCT.2018.06.109

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Espaço da Escrita – Pró-Reitoria de Pesquisa (UNICAMP) for the language services provided. This work was funded in part by the Sao Paulo Research Foundation (FAPESP) [grant numbers 2013/21616-0 and 2018/18546-3] and National Council for Scientific and Technological Development (CNPq) [grant numbers 315304/2018-9 and 140771/2016-6] from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V.V. Gonçalves or A.A. dos Santos Junior.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, V., dos Santos Junior, A. Effect of Non-uniformity on Time-of-Flight Measurement of Critically Refracted Longitudinal Waves for Stress Evaluations of Carbon Composite Materials. Exp Tech 46, 1–15 (2022). https://doi.org/10.1007/s40799-021-00473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-021-00473-1

Keywords

Navigation