Skip to main content

Advertisement

Log in

Mathematical Models of how the Transpiration Affects Rainfall through Agriculture Crops

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The water vapor in the atmosphere is mainly formed through the vaporization of water from oceans, open land water sources, and transpiration through forests and agricultural crops. In the present study, our aim was to formulate a mathematical model to see the effect of transpiration from agricultural crops on rainfall. In the model formulation, it is assumed that clouds are formed in the atmosphere through the transpiration of agricultural crops proportional to the crops apart from the oceans and other sources (assumed constant). It is observed that in the presence of agriculture crops, the average rainfall increases. In the presence of clouds, cloud seeding techniques (use of conducive aerosols) are used to stimulate rainfall, which increases the agricultural crops with saturated type functional form. To capture the impact of environmental fluctuations, the stochastic version of the proposed model is also studied. The analysis of the model reveals that cloud seeding not only increases the rainfall, but it also increases the agricultural crops and clouds in the atmospheric environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amazon aid foundation, Whether patterns, https://amazonaid.org/weather-patterns

  2. Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.

    Article  CAS  Google Scholar 

  3. Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013–1033.

    Article  Google Scholar 

  4. Sheil, D., & Murdiyarso, D. (2009). How Forests Attract Rain: An Examination of a New Hypothesis. BioScience, 59(4), 341–347.

    Article  Google Scholar 

  5. Lata, K., & Misra, A. K. (2020). The influence of forestry resources on rainfall: A deterministic and stochastic model. Applied Mathematical Modelling, 81, 673–689.

    Article  Google Scholar 

  6. Bruintjes, R. T. (1999). A review of cloud seeding experiments to enhance precipitation and some new prospects. Bulletin of the American Meteorological Society, 80(5), 805–820.

    Article  Google Scholar 

  7. Rosenfeld, D., & Woodley, W. L. (1993) Effects of cloud seeding in West Texas: Additional results and new insights. Journal of Applied Meteorology, 32, 1848–1866.

  8. Ryan, B. F., & King, W. D. (1997). A critical review of the Australian experience in cloud seeding. Bulletin of the American Meteorological Society, 78, 239–354.

    Article  Google Scholar 

  9. Hallet, J. (1981). Ice crystal evolution in Florida summer cumuli following Agl seeding. Preprints, Eighth Conf on Inadvertent and Planned Weather Modification, Reno, NV. American Meteorological Society, 114–115.

  10. Ludlam, F. H. (1955). Artificial snowfall from mountain clouds. Tellus, 7, 277–290.

    Article  Google Scholar 

  11. Rosenfeld, D., & Woodley, W. L. (1993). Effects of cloud seeding in West Texas: additional results and new insights. Journal of Applied Meteorology, 32, 1848–1866.

    Article  Google Scholar 

  12. Mather, G.K., Terblanche, D. E., Stefens, F. E., & Fletcher, L. (1997) Results of south african cloud seeding experiments using hygroscopic flares. Journal of Applied Meteorology, 36, 1433–1447.

  13. Shukla, J. B., Sundar, S., Misra, A. K., & Naresh, R. (2008). Modelling the removal of gaseous pollutants and particulate matters from the atmosphere of a city by rain: effect of cloud density. Environmental Modeling and Assessment, 13, 255–263.

    Article  Google Scholar 

  14. Shukla, J. B., Misra, A. K., & Naresh, R. (2010). Chandra, P, How artificial rain can be produced? A Mathematical Model, Nonlinear Analysis: RWA, 11, 2659–2668.

    Google Scholar 

  15. Shukla, J. B., Sundar, S., Misra, A. K., & Naresh, R. (2013). Modeling the effects of aerosols to increase rainfall in regions with shortage. Meteorology and Atmospheric Physics, 120, 157–163.

    Article  Google Scholar 

  16. Sundar, S., & Sharma, R. K. (2013). The role of aerosols to increase rainfall in the regions with less intensity rain: A modeling study. Computational Ecology Software, 3(1), 1–8.

    Google Scholar 

  17. Misra, A. K. (2016). Effects of aerosols in making artificial rain: a modeling study. Journal of Mathematical Chemistry, 54, 1596–1611.

    Article  CAS  Google Scholar 

  18. Snakin, V. V., Prisyazhnaya, A. A., Kovcs-Lng, E. (2001) Environmental Processes and Soil Liquid Phase composition. 244–260. https://doi.org/10.1016/B978-044450675-7.50008-3

  19. Misra, A. K., & Tripathi, A. (2018). A Stochastic model for making artificial rain using aerosols. Physica A: Statistical Mechanics and its Applications, 505, 1113–1126.

    Article  Google Scholar 

  20. Misra, A. K., & Tripathi, A. (2019). Stochastic stability of aerosols-stimulated rainfall model. Physica A: Statistical Mechanics and its Applications, 527, 121337.

    Article  Google Scholar 

  21. Khasminskii, R., Milstein, G. N., & Nevelson, M. B. (2012) Stochastic stability in differential equations. Springer, Heidelberg E., 2.

  22. Mao, X., Marion, G., & Renshaw, E. (2002). Environmental Brownian noise suppresses explosions in population dynamics. Stochastic Processes and their Applications, 97, 95–110.

    Article  Google Scholar 

Download references

Acknowledgements

Amita Tripathi is thankful to University Grants Commission, New Delhi, India, for granting financial assistance to this research work (Ref. No 21/12/2014 (ii) EU-V).

Author information

Authors and Affiliations

Authors

Contributions

Both authors have equal contribution.

Corresponding author

Correspondence to Amita Tripathi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof

Since the right-hand side of the Eq. (7) are locally Lipschitz continuous, hence system Eq. (7) possesses a unique local solution in \([-\tau , \tau _l]\), Now from the third equation of Eq. (7)

$$\begin{aligned} {dA(t)}=&A(-\tau ) \exp \int _{-\tau }^t\left\{ s(u)\left( 1-\frac{A(u)}{L}\right) +\frac{w(u)C_r(u)}{m+C_r(u)}\right\} \\ &du>0 \ \ \forall \ t\ge -\tau . \end{aligned}$$
(14)

While from the first equation of model Eq. (7), \(\frac{dC_d(t)}{dt}\ge -\lambda _0 C_d(t), \ \ \forall \ t\ge -\tau ,\) which gives \(C_d(t)\ge C_d(-\tau ) e^{-\lambda _0t}>0.\) Similarly, the second equation of model Eq. (7) gives \(C_r\ge C_r(-\tau ) e^{-r_0 t}>0\).

Appendix B

Proof

Suppose that \((C_d(t), C_r(t), A(t))\) be a solution of the system Eq. (7) with initial conditions Eq. (8), then from the third equation of the system Eq. (7), we can write

$$\begin{aligned} \frac{dA}{dt}\le & {} s(t) A(t)\left( 1-\frac{A(t)}{L}\right) +w^u A(t)\le A(t)\left( s^u+w^u-\frac{s^l A(t)}{L}\right) . \end{aligned}$$
(15)

Let \(M_1>\frac{(s^u+w^u)L}{s^l}\) then if \(A(0)<M_1,\) we have \(A(t)\le M_1\) \(\forall \ t\ge 0\). But if \(A(0)>M_1\), then \(-e_1=M_1(s+w^u-\frac{sM_1}{L^l})<0,\) so we have \(\frac{dA(t)}{dt}\le -e_1\). Therefore, there exists \(T_1>0\) such that \(A(t)\le M_1 \ \forall \ t\ge T_1.\) Let \(M_2>\frac{Q_d^u+\kappa ^u M_1}{\lambda _0}\) then from the first equation of Eq. (7)

$$\begin{aligned} \frac{dC_d(t)}{dt}\le & {} Q_d^u+\kappa ^u M_1-{\lambda _0}C_d(t). \end{aligned}$$

So if \(C_d(0)<M_2,\) then \(C_d(t)\le M_2\) \(\forall \ t\ge T_1+\tau .\) In case \(C_d(0)>M_2\), \(\frac{dC_d(t)}{dt}<-e_2,\) where \(e_2=(Q_d^u+\kappa M_1 -\lambda _0 M_2),\) therefore there exists \(T_2>T_1+\tau ,\) such that \(C_d(t)\le M_2\)\(\forall t\ge T_2>T_1+\tau\). Similarly, we can show that there exists \(T_3>T_2>T_1+\tau ,\) such that \(C_r(t)\le M_3\) \(\forall\) \(t\ge T_3\), \(M_3>rM_2/r_0.\)

Now \(\frac{dC_d(t)}{dt}\ge Q_d^l-\lambda _0 C_d(t),\) let \(0<m_2< \frac{Q_d^l}{\lambda _0},\) then \(C_d(t)>\frac{Q_d^l}{\lambda _0}\) \(\forall t\ge T_4.\) Same way if \(m_3< \frac{r^lQ_d^l}{\lambda _0r_0},\) then there exists a \(T_5>0,\) such that \(C_r(t)>m_3\) \(\forall \ t \ge T_5\) and if \(m_1< \frac{\left( s^l+\frac{w^l m_3}{m+M_3}\right) L}{s^u},\) then there exists \(T_6>0,\) such that \(A(t)\ge m_1 \ \forall \ t\ge T_6.\)

Now to prove global stability Let \((C_d, C_r, A)\) and \((\tilde{C_d}, \tilde{C_r}, \tilde{A})\) be any two solutions of the system Eq. (7) with initial conditions Eq. (8). Define \(W_1(t)=\vert C_d(t)-\tilde{C}_d(t)\vert ,\) \(W_2(t)=\vert C_r(t)-\tilde{C}_r(t)\vert ,\) \(W_3(t)=\vert A(t)-\tilde{A}(t)\vert .\) The right upper derivative of \(W_1, \ W_2\) and \(W_3\) can be obtained as

$$\begin{aligned} D^+W_1(t)= & \ (-\lambda _0(C_d(t)-\tilde{C}_d(t))+\kappa (A(t)-\tilde{A}(t)))sgn(C_d(t)-\tilde{C}_d(t)),\nonumber \\ & {} \le -\lambda _0^l\vert C_d(t)-\tilde{C}_d(t)\vert +\kappa (t)\vert A(t-\tau )-\tilde{A}(t-\tau )\vert .\end{aligned}$$
(16)
$$\begin{aligned} D^+W_2(t)= & \ (r(C_d(t)-\tilde{C}_d(t))-r_0( C_r(t)-\tilde{C}_r(t)))sgn(C_r(t)\\&-\tilde{C}_r(t)),\nonumber {} \le r^u\vert C_d(t)-\tilde{C}_d(t)\vert -r_0^l\vert C_r(t)-\tilde{C}_r(t)\vert .\\ &D^+W_3(t)\le & \ s(t)\vert A(t)-\tilde{A}(t)\vert -\frac{s(t)(A(t)+\tilde{A}(t))\vert A(t)-\tilde{A}(t)\vert }{L}\nonumber \\&+(2w^u+mw^u) \vert A(t-\tau )-\tilde{A}(t-\tau )\vert \\&+ w^u\tilde{A}(t)\vert C_r(t)-\tilde{C}_r(t)\vert .\nonumber \end{aligned}$$
(17)

Let \(W_4(t)=\int _{t-\tau }^t\kappa (u+\tau )\vert A(u)-\tilde{A}(u)\vert du,\) then

$$\begin{aligned} D^+W_4(t)=\kappa (t+\tau )\vert A(t)-\tilde{A}(t)\vert -\kappa (t) \vert A(t-\tau )-\tilde{A}(t-\tau )\vert . \end{aligned}$$

So if \(W=W_1+W_2+W_3+W_4,\) then

$$\begin{aligned} D^+W(t)\le & {} -(\lambda _0-r_u)\vert C_d(t)-\tilde{C}_d(t)\vert -(r_0-w^um_1\vert C_r(t)-\tilde{C}_r(t)\vert \nonumber \\&-(-\kappa ^u-s^u-w^um+\frac{s^u}{L^l}(A(t)+\tilde{A}(t)))\vert A(t)-\tilde{A}(t)\vert ,\nonumber \\&\le & {} -C_1\vert C_d(t)-\tilde{C}_d(t)\vert -C_2\vert C_r(t)-\tilde{C}_r(t)\vert -C_3\vert A(t)-\tilde{A}(t)\vert , \end{aligned}$$
(18)

where \(C_1=\lambda _0-r_u,\) \(C_2=r_0-w^um_1\) and \(C_3=\frac{2m_1s^u}{L^l}\)\(-\kappa ^u-s^u-w^um.\) Thus for \(t\ge T,\) we get \(D^+W(t)\le -C_1\)\(\vert C_d(t)-\tilde{C}_d(t)\vert -C_2\vert C_r(t)-\tilde{C}_r(t)\vert -C_3\vert A(t)-\tilde{A}(t)\vert .\)

Integrating the above inequality from T to t, we have

$$\begin{aligned} &\int _T^t (C_1\vert C_d(u)-\tilde{C}_d(u)\vert +C_2\vert C_r(u)-\tilde{C}_r(u)\vert + C_3\vert A-\tilde{A}\vert )\\ &<W(T)-W(t)<\infty . \end{aligned}$$

Appendix C

Proof

By comparison theorem, the fourth equation of model Eq. (12) gives \(0\le A\le L\left( 1+\frac{w}{s}\right)\). Now we define a function \(V_4(x(t))=\sum _{i=1}^3x_i(t)\), then Itô’s formula gives

$$\begin{aligned} dV_4(x(t))= & \ (Q_d-\lambda _0x_1-\lambda _1x_1x_3+\kappa x_4+rx_1-r_0x_2+\pi _1\lambda _1x_1x_3+\phi x_1\\&-\delta _0x_3-\lambda _1x_1x_3)dt+\sum _{i=1}^3(x_i-x_i^*)\alpha _idB_i\\ &\le & {} \left( \left( Q_d+L \; \left( 1+\frac{w}{s}\right) \right) -(\lambda _0-r-\phi )x_1-r_0x_2-\delta _0x_3\right) dt\\&+\sum _{i=1}^3(x_i-x_i^*)\alpha _idB_i. \end{aligned}$$

Multiplying by \(e^{\beta t}\) both sides, we get

$$\begin{aligned} e^{\beta t}dV_4(x(t))\le & \ \left( \left( Q_d+L\left( 1+\frac{w}{s}\right) \right) -(\lambda _0-r-\phi )\right.\\ &\left.x_1-r_0x_2-\delta _0x_3\right) e^{\beta t}dt\\&+\sum _{i=1}^3e^{\beta t}(x_i-x_i^*)\alpha _idB_i. \end{aligned}$$

Some algebraic manipulation gives

$$\begin{aligned} d(e^{\beta t}V_4(x(t)))\le & \ \biggl( \left( Q_d+L\left( 1+\frac{w}{s}\right) \right) e^{\beta t}-(\lambda _0-r-\phi -\beta )x_1 \\ &- (r_0-\beta )x_2 -(\delta _0-\beta )x_3\bigg) dt \\ &+\sum _{i=1}^3e^{\beta t}(x_i-x_i^*)\alpha _idB_i. \end{aligned}$$
(19)

Let \(c=\min \{(\lambda _0-r-\phi -\beta ), (r_0-\beta ), (\delta _0-\beta )\}\), then

$$\begin{aligned} d(e^{\beta t}V_4(x(t)))\le & \ \left( \left( Q_d+L\left( 1+\frac{w}{s}\right) \right) e^{\beta t}-cV_4(x(t))\right) dt \\ & +\sum _{i=1}^3e^{\beta t}(x_i-x_i^*)\alpha _idB_i e^{\beta t}E V_4(x(t)) \\ & \le & \ EV_4(0)+\frac{\left( Q_d+L\left( 1+\frac{w}{s}\right) \right) }{\beta }e^{\beta }t. \end{aligned}$$

Therefore, \(\lim _{t\rightarrow \infty } EV_4(x(t))\le \frac{\left( Q_d+L\left( 1+\frac{w}{s}\right) \right) }{\beta }.\) Thus \(x_i\le \)\(\frac{\left( Q_d+L(1+\frac{w}{s})\right) }{\beta },\) for \(i=1,2,3\) and \(x_4\le L\left( 1+\frac{w}{s}\right) .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A.K., Tripathi, A. Mathematical Models of how the Transpiration Affects Rainfall through Agriculture Crops. Environ Model Assess 26, 837–848 (2021). https://doi.org/10.1007/s10666-021-09769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09769-3

Keywords

Navigation