Skip to main content
Log in

Determination of the Temperature Coefficient of Linear Expansion of Materials Based on Silicon Carbide

  • Published:
Refractories and Industrial Ceramics Aims and scope

Information on the temperature coefficient of linear expansion (TCLE) of materials based on silicon carbide is presented. It is shown that the different polytypes 3C (cubic modification) and 4H and 6H (hexagonal modifications) are characterized by different thermal expansions, the difference between the values of which increases with increasing temperature. The TCLEs of reaction-sintered, liquid-phase-sintered, and hot-pressed silicon carbide materials are determined in the range 20 – 1800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Briggs, Engineering Ceramics in Europe and the USA, Enceram, Menith Wood, Worcester, UK, 2011, 331 pp.

    Google Scholar 

  2. A. P. Garshin and S. G. Chulkin, Reaction-Sintered Silicon Carbide Structural Materials. Physicomechanical and Tribotechnical Properties [in Russian], Izd. Politekhn. Univ., St. Petersburg, 2006, 84 pp.

    Google Scholar 

  3. A. P. Gashin, Silicon Carbide. Single Crystals, Powders and Items Based on Them [in Russian], Izd. Politekhn. Univ., St. Petersburg, 2006, 124 pp.

    Google Scholar 

  4. R. E. Krzhizhanovskii and Z. Yu. Shtern, Thermophysical Properties of Nonmetallic Materials. Oxides: Reference Book [in Russian], Energiya, Leningrad, 1973, 118 pp.

    Google Scholar 

  5. S. A. Bortz and D. C. Larsen, “Properties of structural ceramics,” Camp. J. Jan., No. 2, 16 – 31 (1981).

  6. A. Hikata, C. Elbaum, Y. Inomata, et al., “Ultrasonic study of sintered SiC at low temperatures,” Mater. Res. Bull., 20(7), 823 – 828 (1985).

    Article  CAS  Google Scholar 

  7. K. D. Palchaev, Z. K. Murlieva, and K. S. Palchaeva, “Thermal expansion of silicon carbide materials,” J. Eng. Phys. Thermophys., 66(6), 660 – 662 (1994).

    Article  Google Scholar 

  8. Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (6H) polytype of SiC,” J. Am. Ceram. Soc., 69(12), 863 – 866 (1986).

    Article  CAS  Google Scholar 

  9. Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys., 60(2), 612 – 614 (1986).

    Article  CAS  Google Scholar 

  10. Z. Li and R. C. Bradt, “Thermal expansion of the cubic (3C) polytype of SiC,” J. Mater. Sci., 21(12), 4366 – 4368 (1986).

    Article  CAS  Google Scholar 

  11. Z. Li and R. C. Bradt, “Thermal expansion and thermal expansion anisotropy of SiC polytypes,” J. Am. Ceram. Soc., 70(7), 445 – 448 (1987).

    Article  CAS  Google Scholar 

  12. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, et al., Thermophysical Properties of Matter, The TPRC Data Series, Vol. 1, Thermal Conductivity – Metallic Elements and Alloys, 1970, pp. 873 – 878.

  13. R. M. Hazen and L. M. Finge, “Comparative crystal chemistry. Temperature, pressure, composition and the variation of crystal structure,” in: Conference Proceedings of University of Tokyo Hongo, Tokyo, Japan, 1982, p. 115.

  14. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, et al., “Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Ind. Ceram., 58(5).

  15. R. W. G. Wyckoff, Crystal Structure, Liter Science, New York, 1963, 111 pp.

    Google Scholar 

  16. G. G. Gnesin, Silicon Carbide Materials [in Russian], Metallurgiya, Moscow, 1977, 216 pp.

    Google Scholar 

  17. G. G. Gnesin, Oxygen-free Ceramic Materials [in Russian], Tekhnika, Kiev, 1987, 159 pp.

    Google Scholar 

  18. H. K. Henisch and R. Roy, Silicon Carbide – 1968, Pergamon, 1969 [Russian translation, Mir, Moscow, 1972, 349 pp].

  19. S. I. Novikova, Thermal Expansion of Solids [in Russian], Nauka, Moscow, 1974, 293 pp.

    Google Scholar 

  20. D. N. Talwar and J. C. Sherbondy, “Thermal expansion coefficient of 3C–SiC,” Appl. Phys. Lett., 67, No. 22, 3301 – 3303 (1995).

    Article  CAS  Google Scholar 

  21. G. V. Tsagareishvili, T. G. Nakashidze, J. S. Jobava, et al., “Thermal expansion of boron and boron carbide,” J. Less-Common Met., 117, No. 1–2, 159 – 161 (1986).

    Article  CAS  Google Scholar 

  22. T. Ya. Kosolapova, T. V. Andreeva, T. S. Bartnitskaya, et al., Nonmetallic Refractory Compounds [in Russian], Metallurgiya, Moscow, 1985, 224 pp.

  23. T. Ya. Kosolapova, Properties, Production and Use of Refractory Compounds [in Russian], Metallurgiya, Moscow, 1986, 928 pp.

    Google Scholar 

  24. G. V. Samsonov, T. I. Serebryakova, and V. A. Neronov, Borides [in Russian], Atomizdat, Moscow, 1975, 376 pp.

    Google Scholar 

  25. D. D. Nesmelov, “Reaction sintered materials based on boron carbide and silicon carbide (Review),” Glass Ceram., 71(9–10), 313–319 (2015).

    Article  CAS  Google Scholar 

  26. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Materials based on boron carbide obtained by reaction sintering,” IOP Conf. Ser.: Mater. Sci. Eng., 525(1), 012074 (2019).

    Article  CAS  Google Scholar 

  27. M. A. Markov, S. S. Ordan’yan, S. V. Vikhman, et al., “Preparation of MoSi2–SiC–ZrB2 structural ceramics by free sintering,” Refract. Ind. Ceram., 60(4), 385 – 388 (2019).

    Article  CAS  Google Scholar 

  28. S. N. Perevislov, “Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials,” Refract. Ind. Ceram., 60(3), 168 – 173 (2019).

    Article  CAS  Google Scholar 

  29. M. G. Frolova, A. V. Leonov, Y. F. Kargin, et al., “Molding features of silicon carbide products by the method of hot slip casting,” Inorg. Mater.: Appl. Res., 9(4), 675 – 678 (2018).

    Article  Google Scholar 

  30. A. S. Lysenkov, K. A. Kim, D. D. Titov, et al., “Composite material Si3N4/SiC with calcium aluminate additive,” J. Phys.: Conf. Ser., 1134(1), 012036 (2018).

    Google Scholar 

  31. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Production of ceramic materials based on SiC with low-melting oxide additives,” Glass Ceram., 75(9–10), 400 – 407 (2019).

    Article  CAS  Google Scholar 

  32. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Hotpressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 220 – 225 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 11, pp. 44 – 49, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N. Determination of the Temperature Coefficient of Linear Expansion of Materials Based on Silicon Carbide. Refract Ind Ceram 61, 665–670 (2021). https://doi.org/10.1007/s11148-021-00539-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00539-y

Keywords

Navigation