Skip to main content
Log in

Electron Dynamics in the Field of Strong Plasma and Electromagnetic Waves: A Review

  • ELECTROMAGNETIC WAVES IN PLASMA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Collective methods of charged particle acceleration provide an approach towards achieving high-energy particle beams with relatively compact accelerator facilities. Among the collective acceleration methods, one of the central places belong to the electron Laser Wakefield Acceleration concept, when the regular accelerating structure in the form of longitudinal electrostatic wave propagating with the phase speed close to speed of light in vacuum is generated by ultrashort laser pulse in collisionless plasma. The review article contains theoretical description of charged particle (electron) interaction with various configurations of the electromagnetic field and with the longitudinal plasma waves. The radiation dominated regimes of the electron interaction with strong electromagnetic waves, when the radiation friction force effects play the key role, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. Fermi Remembered, Ed. by J. W. Crown, 2nd ed. (Univ. Chicago, 2004).

    Google Scholar 

  2. Ya. B. Fainberg, “Acceleration of particles in a plasma,” Sov. J. At. En. 6, 297–309 (1960). https://doi.org/10.1007/BF01479735

  3. V. I. Veksler, “On a new method for the acceleration of particles,” Dokl. Akad. Nauk SSSR. 44 (9), 393–396 (1944).

    Google Scholar 

  4. G. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78 (2), 309–372 (2006). https://doi.org/10.1103/RevModPhys.78.309

    Article  ADS  Google Scholar 

  5. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81 (3), 1229–1286 (2009). https://doi.org/10.1103/RevModPhys.81.1229

    Article  ADS  Google Scholar 

  6. M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel, and M. Roth, “Fast ion generation by high-intensity laser irradiation of solid targets and applications,” Fusion Sci. Technol. 49 (3), 412–439 (2006). https://doi.org/10.13182/FST06-A1159

    Article  Google Scholar 

  7. H. Daido, M. Nishiuchi, and A. S Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75 (5), 056401 (2012). https://doi.org/10.1088/0034-4885/75/5/056401

    Article  ADS  Google Scholar 

  8. T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43 (4), 267–269 (1979). https://doi.org/10.1103/PhysRevLett.43.267

    Article  ADS  Google Scholar 

  9. A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, Cs. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, and W. P. Leemans, “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122 (8), 084801 (2019). https://doi.org/10.1103/PhysRevLett.122.084801v

    Article  ADS  Google Scholar 

  10. A. J. Gonsalves, K. Nakamura, C. Benedetti, C. V. Pieronek, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, J. Daniels, Cs. Tóth, L. Obst-Huebl, R. G. W. van den Berg, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W. P. Leemans, and E. Esarey, “Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV,” Phys. Plasmas. 27 (5), 053102 (2020). https://doi.org/10.1063/5.0002769

    Article  ADS  Google Scholar 

  11. N. Hafz, T. M. Jeong, I. W. Choi, S. K. Lee, K. H. Pae, V. V. Kulagin, J. H. Sung, T. J. Yu, K.-H. Hong, T. Hosokai, J. R. Cary, D.-K. Ko, and J. Lee, “Stable generation of GeV-class electron beams from self-guided laser–plasma channels,” Nat. Photonics. 2, 571–577 (2008). https://doi.org/10.1038/nphoton.2008.155

    Article  Google Scholar 

  12. W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, Cs. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “ Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113 (24), 245002 (2014). https://doi.org/10.1103/PhysRevLett.113.245002

    Article  ADS  Google Scholar 

  13. K. Ogura, M. Nishiuchi, A. S. Pirozhkov, T. Tanimoto, A. Sagisaka, T. Zh. Esirkepov, M. Kando, T. Shizuma, T. Hayakawa, H. Kiriyama, T. Shimomura, S. Kondo, S. Kanazawa, Y. Nakai, H. Sasao, F. Sasao, Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogo, S. V. Bulanov, P. R. Bolton, and K. Kondo, “Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system,” Opt. Lett. 37 (4), 2868–2870 (2012). https://doi.org/10.1364/OL.37.002868

    Article  ADS  Google Scholar 

  14. I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas. 23 (7), 070701 (2016). https://doi.org/10.1063/1.4958654

    Article  ADS  Google Scholar 

  15. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, and G. A. Wurden, “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110 (4), 044802 (2013). https://doi.org/10.1103/PhysRevLett.110.044802

    Article  ADS  Google Scholar 

  16. A. Higginson, R. J. Gray, M. King, R.J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, and P. McKenna, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018). https://doi.org/10.1038/s41467-018-03063-9

    Article  ADS  Google Scholar 

  17. C. Danson, C. Haefner, J. Bromage, T. Butcher, J. Chanteloup, E. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, E54 (2019). https://doi.org/10.1017/hpl.2019.36

    Article  Google Scholar 

  18. ELI-Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook, Ed. by G. A. Mourou, G. Korn, W. Sandner, and J. L. Collier (THOSS Media, Berlin, 2011).

    Google Scholar 

  19. S. Weber, S. Bechet, S. Borneis, L. Brabec, M. Bučka, E. Chacon-Golcher, M. Ciappina, M. DeMarco, A. Fajstavr, K. Falk, E.-R. Garcia, J. Grosz, Y.-J. Gu, J.-C. Hernandez, M. Holec, P. Janečka, M. Jantač, M. Jirka, H. Kadlecova, D. Khikhlukha, O. Klimo, G. Korn, D. Kramer, D. Kumar, T. Lastovička, P. Lutoslawski, L. Morejon, V. Olšovcová, M. Rajdl, O. Renner, B. Rus, S. Singh, M. Šmid, M. Sokol, R. Versaci, R. Vrána, M. Vranic, J. Vyskočil, A. Wolf, and Q. Yu, “An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines,” Matter Radiat. Extremes. 2 (4), 149–176 (2017). https://doi.org/10.1016/j.mre.2017.03.003

    Article  Google Scholar 

  20. K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes. 5 (2), 024402 (2020). https://doi.org/10.1063/1.5093535

    Article  Google Scholar 

  21. B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Controlled Fusion. 60 (4), 044002 (2018). https://doi.org/10.1088/1361-6587/aaa7fb

    Article  ADS  Google Scholar 

  22. J. P. Zou, C. Le Blanc, D. N. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez, F. Giambruno, A. Fréneaux, F. Leconte, D. Badarau, J. M. Boudenne, D. Fournet, T. Valloton, J. L. Paillard, J. L. Veray, M. Pina, P. Monot, J. P. Chambaret, P. Martin, F. Mathieu, P. Audebert, and F. Amiranoff, “Design and current progress of the Apollon 10 PW project,” High Power Laser Sci. Eng. 3, e2 (2015). https://doi.org/10.1017/hpl.2014.41

    Article  Google Scholar 

  23. A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Phys.-Usp. 54 (1), 9–28 (2011). https://doi.org/10.3367/UFNe.0181.201101c.0009

    Article  ADS  Google Scholar 

  24. Plasma Science: Enabling Technology, Sustainability, Security, and Exploration (Nat. Acad., Washington, DC, 2020). https://doi.org/10.17226/25802

  25. U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81 (2), 445–480 (2009). https://doi.org/10.1103/RevModPhys.81.445

    Article  ADS  Google Scholar 

  26. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rosanov, “Relativistic mirrors in plasmas. Novel results and perspectives,” Phys.-Usp. 56 (5), 429–464 (2013). https://doi.org/10.3367/UFNe.0183.201305a.0449

    Article  ADS  Google Scholar 

  27. S. V. Bulanov, J. J. Wilkens, M. Molls, T. Zh. Esirkepov, G. Korn, G. Kraft, S. D. Kraft, and V. S. Khoroshkov, “Laser ion acceleration for hadron therapy,” Phys.-Usp. 57 (12), 1149–1179 (2014). https://doi.org/10.3367/UFNe.0184.201412a.1265

    Article  ADS  Google Scholar 

  28. B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys. 78 (3), 755–807 (2006). https://doi.org/10.1103/RevModPhys.78.755

    Article  ADS  Google Scholar 

  29. S. V. Bulanov, T. Zh. Esirkepov, D. Habs, F. Pegoraro, and T. Tajima, “Relativistic laser-matter interaction and relativistic laboratory astrophysics,” Eur. Phys. J. D. 55 (2), 483–507 (2009). https://doi.org/10.1140/epjd/e2009-00138-1

    Article  ADS  Google Scholar 

  30. M. Marklund and P. Shukla, “Nonlinear collective effects in photon–photon and photon–plasma interactions,” Rev. Mod. Phys. 78 (2), 591–640 (2006). https://doi.org/10.1103/RevModPhys.78.591

    Article  ADS  Google Scholar 

  31. A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84 (3), 1177–1228 (2012). https://doi.org/10.1103/RevModPhys.84.1177

    Article  ADS  Google Scholar 

  32. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. Koga, K. Kondo, and G. Korn, “On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers,” Plasma Phys. Rep. 41, 1–51 (2015). https://doi.org/10.1134/S1063780X15010018

    Article  ADS  Google Scholar 

  33. S. V. Bulanov, “Magnetic reconnection: From MHD to QED,” Plasma Phys. Controlled Fusion. 59 (1), 014029 (2017). https://doi.org/10.1088/0741-3335/59/1/014029

    Article  ADS  Google Scholar 

  34. Y. J. Gu, F. Pegoraro, P. V. Sasorov, D. Golovin, A. Yogo, G. Korn, and S. V. Bulanov, “Electromagnetic burst generation during annihilation of magnetic field in relativistic laser-plasma interaction,” Sci. Rep. 9, 19462 (2019). https://doi.org/10.1038/s41598-019-55976-0

    Article  ADS  Google Scholar 

  35. P. Zhang, S. S. Bulanov, D. Seipt, A. V. Arefiev, and A. G. R. Thomas, “Relativistic plasma physics in supercritical fields,” Phys. Plasmas. 27 (5), 050601 (2020). https://doi.org/10.1063/1.5144449

    Article  ADS  Google Scholar 

  36. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, H. Kiriyama, J. K. Koga, H. Kotaki, M. Mori, and M. Kando, “On some theoretical problems of laser wakefield accelerators,” J. Plasma Phys. 82 (3), 905820308 (2016). https://doi.org/10.1017/S0022377816000623

    Article  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  38. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, London; Addison-Wesley, Reading, Mass., 1964).

  39. A. M. Fedotov, K. Yu. Korolev, and M. V. Legkov, “Exact analytical expression for the electromagnetic field in a focused laser beam or pulse,” Proc. SPIE. 6726, 672613 (2007). https://doi.org/10.1117/12.751772

    Article  Google Scholar 

  40. I. A. Artyukov, A. V. Vinogradov, N. V. D’yachkov, and R. M. Feshchenko, “Energy density in a collapsing electromagnetic wave,” Quantum Electron. 48 (11), 1073–1075 (2018). https://doi.org/10.1070/QEL16767

    Article  ADS  Google Scholar 

  41. T. M. Jeong, S. V. Bulanov, S. Weber, and G. Korn, “Analysis on the longitudinal field strength formed by tightly-focused radially-polarized femtosecond petawatt laser pulse,” Opt. Express. 26 (25), 33091–33107 (2018). https://doi.org/10.1364/OE.26.033091

    Article  ADS  Google Scholar 

  42. T. M. Jeong, S. V. Bulanov, P. V. Sasorov, S. S. Bulanov, J. K. Koga, and G. Korn, “4π-spherically focused electromagnetic wave: Diffraction optics approach and high-power limits,” Opt. Express. 28 (9), 13991–14006 (2020). https://doi.org/10.1364/OE.387654

    Article  ADS  Google Scholar 

  43. D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics. 12, 262–265 (2018). https://doi.org/10.1038/s41566-018-0121-8

    Article  ADS  Google Scholar 

  44. U. Levi, Y. Silberberg, and N. Davidson, “Mathematics of vectorial Gaussian beams,” Adv. Opt. Photonics. 11 (4), 828–891 (2019). https://doi.org/10.1364/AOP.11.000828

    Article  ADS  Google Scholar 

  45. S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: A way to lower the threshold of e + e pair production from vacuum,” Phys. Rev. Lett. 104 (22), 220404 (2010). https://doi.org/10.1103/PhysRevLett.104.220404

    Article  ADS  Google Scholar 

  46. S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105 (22), 220407 (2010). https://doi.org/10.1103/PhysRevLett.105.220407

    Article  ADS  Google Scholar 

  47. A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113 (1), 014801 (2014). https://doi.org/10.1103/PhysRevLett.113.014801

    Article  ADS  Google Scholar 

  48. J. Magnusson, A. Gonoskov, M. Marklund, T. Zh. Esirkepov, J. K. Koga, K. Kondo, M. Kando, S. V. Bulanov, G. Korn, and S. S. Bulanov, “Laser-particle collider for multi-GeV photon production,” Phys. Rev. Lett. 122 (25), 254801 (2019). https://doi.org/10.1103/PhysRevLett.122.254801

    Article  ADS  Google Scholar 

  49. J. Magnusson, A. Gonoskov, M. Marklund, T. Zh. Esir-kepov, J. K. Koga, K. Kondo, M. Kando, S. V. Bulanov, G. Korn, C. G. R. Geddes, C. B. Schroeder, E. Esarey, and S. S. Bulanov, “Multiple colliding laser pulses as a basis for studying high-field high-energy physics,” Phys. Rev. A. 100 (6), 063404 (2019). https://doi.org/10.1103/PhysRevA.100.063404

    Article  ADS  Google Scholar 

  50. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2: Partial Differential Equations (Interscience, New York, 1962).

  51. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

    MATH  Google Scholar 

  52. NIST Handbook of Mathematical Functions, Ed. by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge Univ. Press, New York, 2010).

    MATH  Google Scholar 

  53. A. Debus, R. Pausch, A. Huebl, K. Steiniger, R. Widera, T. E. Cowan, U. Schramm, and M. Bussmann, “Circumventing the dephasing and depletion limits of laser-wakefield acceleration,” Phys. Rev. X. 9 (3), 031044 (2019). https://doi.org/10.1103/PhysRevX.9.031044

    Article  Google Scholar 

  54. S. V. Bulanov, Introduction to Nonlinear Physics (Scuola Normale Superiore, Pisa, 2000).

    MATH  Google Scholar 

  55. D. Duffy, Green’s Functions with Applications (Chapman and Hall/CRC, New York, 2001).

    Book  Google Scholar 

  56. A. I. Akhiezer and R. V. Polovin, “Theory of wave motion of an electron plasma,” Sov Phys.-JETP. 3 (5), 696–705 (1956).

    MathSciNet  MATH  Google Scholar 

  57. V. A. Kozlov, A. G. Litvak, and E. V. Suvorov, “Envelope solitons of relativistic strong electromagnetic waves,” Sov. Phys.-JETP. 49 (1), 75–80 (1979).

    ADS  Google Scholar 

  58. D. Farina and S. V. Bulanov, “Relativistic electromagnetic solitons in the electron-ion plasma,” Phys. Rev. Lett. 86 (23), 5289–5292 (2001). https://doi.org/10.1103/PhysRevLett.86.5289

    Article  ADS  Google Scholar 

  59. S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91 (8), 085001 (2003). https://doi.org/10.1103/PhysRevLett.91.085001

    Article  ADS  Google Scholar 

  60. J. M. Dawson, “Nonlinear electron oscillations in a cold plasma,” Phys. Rev. 133 (2), 383–387 (1959). https://doi.org/10.1103/PhysRev.113.383

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. S. S. Bulanov, A. Maksimchuk, C. B Schroeder, A. G. Zhidkov, E. Esarey, and W. P. Leemans, “Relativistic spherical plasma waves,” Phys. Plasmas. 19 (2), 020702 (2012). https://doi.org/10.1063/1.3683001

    Article  ADS  Google Scholar 

  62. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, and J. Koga, “Relativistic mirrors in laser plasmas (analytical methods),” Plasma Sources Sci. Technol. 25 (5), 053001 (2016). https://doi.org/10.1088/0963-0252/25/5/053001

    Article  ADS  Google Scholar 

  63. M. Kando, T. Esirkepov, J. K. Koga, A. S. Pirozhkov, and S. V. Bulanov, “Coherent, short-pulse X-ray generation via relativistic flying mirrors,” Quantum Beam Sci. 2 (2), 9–19 (2018). https://doi.org/10.3390/qubs2020009

    Article  ADS  Google Scholar 

  64. S. V. Bulanov, N. M. Naumova, V. A. Vshivkov, G. I. Dudnikova, T. V. Liseikina, T. Zh. Esirkepov, F. F. Kamenets, F. Califano, and F. Pegoraro, “Interaction of petawatt laser pulses with underdense plasmas,” Plasma Phys. Rep. 25 (9), 701–714 (1999). https://doi.org/10.1134/1.952776

    Article  ADS  Google Scholar 

  65. D. Farina and S. V. Bulanov, “Slow electromagnetic solitons in electron-ion plasmas,” Plasma Phys. Rep. 27 (8), 641–561 (2001). https://doi.org/10.1134/1.1390536

    Article  ADS  Google Scholar 

  66. P. Kaw and J. Dawson, “Relativistic nonlinear propagation of laser beams in cold overdense plasmas,” Phys. Fluids. 13 (2), 472–481 (1970). https://doi.org/10.1063/1.1692942

    Article  ADS  Google Scholar 

  67. A. C.-L. Chian, “Relativistically strong-coupled transverse-longitudinal waves in an electron-ion plasma,” Phys. Rev. A. 24 (5), 2773–2776 (1981). https://doi.org/10.1103/PhysRevA.24.2773

    Article  ADS  Google Scholar 

  68. I. V. Smetanin, D. Farina, J. Koga, K. Nakajima, and S. V. Bulanov, “Evolution of an intense elliptically polarized electromagnetic wave in underdense plasmas,” Phys. Lett. A. 320 (5-6), 438–445 (2004). https://doi.org/10.1016/j.physleta.2003.09.085

    Article  ADS  Google Scholar 

  69. T. C. Pesch and H.-J. Kull, “Linearly polarized waves with constant phase velocity in relativistic plasmas,” Phys. Plasmas. 14 (8), 083103 (2007). https://doi.org/10.1063/1.2760209

    Article  ADS  Google Scholar 

  70. M. N. Rosenbluth and C. S. Liu, “Excitation of plasma waves by two laser beams,” Phys. Rev. Lett. 29 (11), 701–704 (1972). https://doi.org/10.1103/PhysRevLett.29.701

    Article  ADS  Google Scholar 

  71. C. S. Liu, V. K. Tripathi, and B. Eliasson, High-Power Laser-Plasma Interaction (Cambridge Univ. Press, Cambridge, 2019).

    Google Scholar 

  72. S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov, “Excitation of ultrarelativistic plasma waves of electromagnetic radiation,” JETP Lett. 50 (4), 198–201 (1989). http://www.jetpletters.ac.ru/ps/1127/article_17078.shtml

    ADS  Google Scholar 

  73. S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, “Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma,” Phys. Fluids B. 4 (7), 1935–1942 (1992). https://doi.org/10.1063/1.860046

    Article  ADS  Google Scholar 

  74. S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov, “Limiting electric field of the wakefield plasma wave,” JETP Lett. 53 (11), 565–569 (1991).

    ADS  Google Scholar 

  75. S. V. Bulanov, F. Califano, G. I. Dudnikova, V. A. Vshivkov, T. V. Liseikina, N. M. Naumova, F. Pegoraro, J.-I. Sakai, and A. S. Sakharov, “Laser acceleration of charged particles in inhomogeneous plasmas II: Particle injection into the acceleration phase due to nonlinear wake wave-breaking,” Plasma Phys. Rep. 25 (6), 468–480 (1999).

    ADS  Google Scholar 

  76. S. Corde, C. Thaury, A. Lifschitz, G. Lampert, K. Ta Phuoc, X. Davoine, R. Lehe, D. Douillet, A. Rousse, and V. Malka, “Observation of longitudinal and transverse self-injections in laser–plasma accelerators,” Nat. Commun. 4, 1501 (2013). https://doi.org/10.1038/ncomms2528

    Article  ADS  Google Scholar 

  77. A. Zhidkov, J. Koga, K. Kinoshita, and M. Uesaka, “Effect of self-injection on ultraintense laser wake-field acceleration,” Phys. Rev. E. 69 (3), 035401 (2004). https://doi.org/10.1103/PhysRevE.69.035401

    Article  ADS  Google Scholar 

  78. A. Zhidkov, J. Koga, T. Hosokai, K. Kinoshita, and M. Uesaka, “Effects of plasma density on relativistic self-injection for electron laser wakefield acceleration,” Phys. Plasmas. 11 (12), 5379–5386 (2004). https://doi.org/10.1063/1.1807849

    Article  ADS  Google Scholar 

  79. T. Ohkubo, S. V. Bulanov, A. G. Zhidkov, T. Esirkepov, J. Koga, M. Uesaka, and T. Tajima, “Wave-breaking injection of electrons to a laser wake field in plasma channels at the strong focusing regime,” Phys. Plasmas. 13 (10), 103101 (2006). https://doi.org/10.1063/1.2357594

    Article  ADS  Google Scholar 

  80. S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, “Particle injection into the wave acceleration phase due to nonlinear wake wave breaking,” Phys. Rev. E. 58 (5), R5257 (1998). https://doi.org/10.1103/PhysRevE.58.R5257

    Article  ADS  Google Scholar 

  81. H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, “Plasma electron trapping and acceleration in a plasma wake field using a density transition,” Phys. Rev. Lett. 86 (6), 1011–1014 (2001). https://doi.org/10.1103/PhysRevLett.86.1011

    Article  ADS  Google Scholar 

  82. M. C. Thomson, J. B. Rosenzweig, and H. Suk, “Plasma density transition trapping as a possible high-brightness electron beam source,” Phys. Rev. Spec. Top.–Accel. Beams. 7 (1), 011301 (2004). https://doi.org/10.1103/PhysRevSTAB.7.011301

    Article  ADS  Google Scholar 

  83. P. Tomassini, M. Galimberti, A. Giuletti, D. Giuletti, L. A. Gizzi, L. Labate, and F. Pegoraro, “Laser wakefield acceleration with controlled self-injection by sharp density transition,” Laser Part. Beams. 22 (4), 423–429 (2004). https://doi.org/10.1017/S026303460404008X

    Article  ADS  Google Scholar 

  84. A. V. Brantov, T. Zh. Esirkepov, M. Kando, H. Kotaki, V. Yu. Bychenkov, and S. V. Bulanov, “Controlled electron injection into the wake wave using plasma density inhomogeneity,” Phys. Plasmas. 15 (7), 073111 (2008). https://doi.org/10.1063/1.2956989

    Article  ADS  Google Scholar 

  85. K. Schmid, A. Buck, C. M. S. Sears, J. M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, and L. Veisz, “Density-transition based electron injector for laser driven wakefield accelerators,” Phys. Rev. Spec. Top.–Accel. Beams. 13 (9), 091301 (2010). https://doi.org/10.1103/PhysRevSTAB.13.091301

    Article  ADS  Google Scholar 

  86. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, “Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel,” Phys. Plasmas. 17 (8), 083107 (2010). https://doi.org/10.1063/1.3469581

    Article  ADS  Google Scholar 

  87. A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, and W. P. Leemans, “Tunable laser plasma accelerator based on longitudinal density tailoring,” Nat. Phys. 7, 862–866 (2011). https://doi.org/10.1038/nphys2071

    Article  Google Scholar 

  88. A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz, “Shock-front injector for high-quality laser-plasma acceleration,” Phys. Rev. Lett. 110 (18), 185006 (2013). https://doi.org/10.1103/PhysRevLett.110.185006

    Article  ADS  Google Scholar 

  89. S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78 (22), 4205–4208 (1997). https://doi.org/10.1103/PhysRevLett.78.4205

    Article  ADS  Google Scholar 

  90. A. Pukhov and J. Meyer-ter-Vehn, “Laser wake field acceleration: The highly non-linear broken-wave regime,” Appl. Phys. B. 74, 355–361 (2002). https://doi.org/10.1007/s003400200795

    Article  ADS  Google Scholar 

  91. M. Kando, Y. Fukuda, H. Kotaki, J. Koga, S. V. Bulanov, T. Tajima, A. Chao, R. Pitthan, K.-P. Schuler, A.G. Zhidkov, and K. Nemoto, “On the production of flat electron bunches for laser wakefield acceleration,” J. Exp. Theor. Phys. 105 (5), 916–926 (2007). https://doi.org/10.1134/S1063776107110064

    Article  ADS  Google Scholar 

  92. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle, “Electron injection into plasma wakefields by colliding laser pulses,” Phys. Rev. Lett. 79 (14), 2682–2685 (1997). https://doi.org/10.1103/PhysRevLett.79.2682

    Article  ADS  Google Scholar 

  93. H. Kotaki, S. Masuda, M. Kando, J. Koga, and K. Nakajima, “Head-on injection of a high quality electron beam by the interaction of two laser pulses,” Phys. Plasmas. 11 (6), 3296–3302 (2004). https://doi.org/10.1063/1.1751171

    Article  ADS  Google Scholar 

  94. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature. 444 (7120), 737–739 (2006). https://doi.org/10.1038/nature05393

    Article  ADS  Google Scholar 

  95. H. Kotaki, I. Daito, M. Kando, Y. Hayashi, K. Kawase, T. Kameshima, Y. Fukuda, T. Homma, J. Ma, L.‑M. Chen, T. Zh. Esirkepov, A. S. Pirozhkov, J. K. Koga, A. Faenov, T. Pikuz, H. Kiriyama, H. Okada, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, H. Matsuura, S. Kondo, S. Kanazawa, A. Sugiyama, H. Daido, and S.V. Bulanov, “Electron optical injection with head-on and countercrossing colliding laser pulses,” Phys. Rev. Lett. 103 (19), 194803 (2009). https://doi.org/10.1103/PhysRevLett.103.194803

    Article  ADS  Google Scholar 

  96. T. Hosokai, A. Zhidkov, A. Yamazaki, Y. Mizuta, M. Uesaka, and R. Kodama. “Electron energy boosting in laser-wake-field acceleration with external magnetic field B ~ 1 T and laser prepulses,” Appl. Phys. Lett. 96 (12), 121501 (2010). https://doi.org/10.1063/1.3371709

    Article  ADS  Google Scholar 

  97. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. K. Koga, T. Hosokai, A. G. Zhidkov, and R. Kodama, “Nonlinear plasma wave in magnetized plasmas,” Phys. Plasmas. 20 (8), 083113 (2013). https://doi.org/10.1063/1.4817949

    Article  ADS  Google Scholar 

  98. S. Rassou, A. Bourdier, and M. Drouin, “Influence of a strong longitudinal magnetic field on laser wakefield acceleration,” Phys. Plasmas. 22 (7), 073104 (2015). https://doi.org/10.1063/1.4923464

    Article  ADS  Google Scholar 

  99. A. Bierwage, T. Zh. Esirkepov, J. K. Koga, and A. S. Pirozhkov, “Similarity of magnetized plasma wake channels behind relativistic laser pulses with different wavelengths,” Comput. Phys. Commun. 244, 49–68 (2019). https://doi.org/10.1016/j.cpc.2019.07.004

    Article  ADS  MathSciNet  Google Scholar 

  100. T. Zh. Esirkepov, S. V. Bulanov, M. Yamagiwa, and T. Tajima, “Electron, positron, and photon wakefield acceleration: Trapping, wake overtaking, and ponderomotive acceleration,” Phys. Rev. Lett. 96 (1), 014803 (2006). https://doi.org/10.1103/PhysRevLett.96.014803

    Article  ADS  Google Scholar 

  101. S. V. Bulanov and T. Tajima, “On the quasi-monoenergetic electron beam generation in the laser wakefield acceleration,” Kasokuki – J. Part. Acceleration Soc. Jpn. 2 (2), 35–41 (2005).

    Google Scholar 

  102. G. A. Askar’yan, “The self-focusing effect,” Sov. Phys.-Usp. 16 (5), 680–686 (1974). https://doi.org/10.1070/PU1974v016n05ABEH004130

    Article  ADS  Google Scholar 

  103. G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, “Self-focusing of short intense pulses in plasmas,” Phys. Fluids. 30 (2), 526–532 (1987). https://doi.org/10.1063/1.866349

    Article  ADS  Google Scholar 

  104. S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas. 12 (4), 043109 (2005). https://doi.org/10.1063/1.1884126

    Article  ADS  Google Scholar 

  105. W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Viera, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.–Accel. Beams. 10 (6), 061301(2007). https://doi.org/10.1103/PhysRevSTAB.10.061301

    Article  ADS  Google Scholar 

  106. S. S Bulanov, A. Brantov, V. Yu. Bychenkov, V. Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime,” Phys. Rev. E. 78 (2), 026412 (2008). https://doi.org/10.1103/PhysRevE.78.026412

    Article  ADS  Google Scholar 

  107. M. Kando, T. Nakamura, A. Pirozhkov, T. Esirkepov, J. K. Koga, and S. V. Bulanov, “Laser technologies and the combined applications towards vacuum physics,” Prog. Theor. Phys. Suppl. 193, 236–243 (2012). https://doi.org/10.1143/PTPS.193.236

    Article  ADS  Google Scholar 

  108. S. V. Bulanov, G. Mourou, and T. Tajima, “Relativistic electron beam slicing by wakefield in plasmas,” Phys. Lett. A. 372 (27-28), 4813–4816 (2008). https://doi.org/10.1016/j.physleta.2008.05.017

    Article  ADS  Google Scholar 

  109. A. J. Lichtenberg, Phase-Space Dynamics of Particles (Wiley, New York, 1969).

    MATH  Google Scholar 

  110. W. H. Bennett, “Magnetically self-focusing streams,” Phys. Rev. 45 (12), 890–897 (1934). https://doi.org/10.1103/PhysRev.45.890

    Article  ADS  Google Scholar 

  111. P. Chen, J. J. Su, T. C. Katsouleas, S. Wilks, and J. M. Dawson, “Plasma focusing for high-energy beams,” IEEE Trans. Plasma Sci. 15 (2), 218–225 (1987). https://doi.org/10.1109/TPS.1987.4316688

    Article  ADS  Google Scholar 

  112. W. K. H. Panofsky and W. R. Baker, “A focusing device for the external 350-MeV proton beam of the 184-inch cyclotron at Berkeley,” Rev. Sci. Instrum. 21 (5), 445–446 (1950). https://doi.org/10.1063/1.1745611

    Article  ADS  Google Scholar 

  113. J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115 (18), 184802 (2015). https://doi.org/10.1103/PhysRevLett.115.184802

    Article  ADS  Google Scholar 

  114. G. A. Bagdasarov, N. A. Bobrova, A. S. Boldarev, O. G. Olkhovskaya, P. V. Sasorov, V. A. Gasilov, S. K. Barber, S. S. Bulanov, A. J. Gonsalves, C. B. Schroeder, J. van Tilborg, E. Esarey, W. P. Leemans, T. Levato, D. Margarone, G. Korn, M. Kando, and S. V. Bulanov, “On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas,” Phys. Plasmas. 24 (12), 123120 (2017). https://doi.org/10.1063/1.5009118

    Article  ADS  Google Scholar 

  115. T. Zh. Esirkepov, “Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor,” Comput. Phys. Commun. 135 (2), 144–153 (2001). https://doi.org/10.1016/S0010-4655(00)00228-9

    Article  ADS  MATH  Google Scholar 

  116. S. Humphries, Jr., Charged Particle Beams (Wiley, New York, 1990).

    Google Scholar 

  117. A. W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993).

    Google Scholar 

  118. H. M. Lai, “Particle acceleration by an intense solitary electromagnetic pulse,” Phys. Fluids. 23 (12), 2373–2375 (1980). https://doi.org/10.1063/1.862941

    Article  ADS  Google Scholar 

  119. T. G. Blackburn, “Radiation reaction in electron–beam interactions with high-intensity lasers,” Rev. Mod. Plasma Phys. 4 (1), 5 (2020). https://doi.org/10.1007/s41614-020-0042-0

    Article  ADS  Google Scholar 

  120. A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma,” Phys. Rev. Lett. 88 (18), 185002 (2002). https://doi.org/10.1103/PhysRevLett.88.185002

    Article  ADS  Google Scholar 

  121. S. V. Bulanov, T. Zh. Esirkepov, J. Koga, and T. Tajima, “Interaction of electromagnetic waves with plasma in the radiation-dominated regime,” Plasma Phys. Rep. 30, 196–213 (2004). https://doi.org/10.1134/1.1687021

    Article  ADS  Google Scholar 

  122. J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, and S. P. D. Mangles, “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X. 8 (1), 011020 (2018). https://doi.org/10.1103/PhysRevX.8.011020

    Article  Google Scholar 

  123. K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. D. Baird, K. Behm, S. Bohlen, J. M. Cole, D. J. Corvan, M. Duff, E. Gerstmayr, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, P. McKenna, C. D. Murphy, Z. Najmudin, C. P. Ridgers, G. M. Samarin, D. R. Symes, A. G. R. Thomas, J. Warwick, and M. Zepf, “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X. 8 (3), 031004 (2018). https://doi.org/10.1103/PhysRevX.8.031004

    Article  Google Scholar 

  124. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, M. Kando, H. Kiriyama, J. K. Koga, K. Kondo, H. Kotaki, A. S. Pirozhkov, S. S. Bulanov, A. G. Zhidkov, P. Chen, D. Neely, Y. Kato, N. B. Narozhny, and G. Korn, “On the design of experiments for the study of extreme field limits in the interaction of laser with ulrarelativistic electron beam,” Nucl. Instrum. Methods Phys. Res., Sect. A. 660 (1), 31–42 (2011). https://doi.org/10.1016/j.nima.2011.09.029

    Article  Google Scholar 

  125. A. G. R. Thomas, C. P. Ridgers, S. S. Bulanov, B. J. Griffin, and S. P. D. Mangles, “Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam,” Phys. Rev. X. 2 (2), 041004 (2012). https://doi.org/10.1103/PhysRevX.2.041004

    Article  Google Scholar 

  126. T. Nakamura, J. K. Koga, T. Zh. Esirkepov, M. Kando, G. Korn, and S. V. Bulanov, “High power γ-ray flash generation in the ultraintense laser-plasma interaction,” Phys. Rev. Lett. 108 (19), 195001 (2012). https://doi.org/10.1103/PhysRevLett.108.195001

    Article  ADS  Google Scholar 

  127. C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ-rays from laser-irradiated solids,” Phys. Rev. Lett. 108 (16), 165006 (2012). https://doi.org/10.1103/PhysRevLett.108.165006

    Article  ADS  Google Scholar 

  128. K. V. Lezhnin, P. V. Sasorov, G. Korn, and S. V. Bulanov, “High power gamma flare generation in multi-petawatt laser interaction with tailored targets,” Phys. Plasmas. 25 (12), 123105 (2018). https://doi.org/10.1063/1.5062849

    Article  Google Scholar 

  129. A. Zhidkov, S. Masuda, S. S. Bulanov, J. Koga, T. Hosokai, and R. Kodama, “Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach,” Phys. Rev. Spec. Top.–Accel. Beams. 17 (5), 054001 (2014). https://doi.org/10.1103/PhysRevSTAB.17.054001

    Article  ADS  Google Scholar 

  130. S. Gales, D. L. Balabanski, F. Negoita, O. Tesileanu, C. A. Ur, D. Ursescu, and N. V. Zamfir, “New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams,” Phys. Scr. 91 (9), 093004 (2016). https://doi.org/10.1088/0031-8949/91/9/093004

    Article  ADS  Google Scholar 

  131. V. B. Beresteskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon, New York, 1982).

    Google Scholar 

  132. I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E. 81 (3), 036412 (2010). https://doi.org/10.1103/PhysRevE.81.036412

    Article  ADS  Google Scholar 

  133. V. I. Ritus, in Issues in Intense-Field Quantum Electrodynamics, Ed. by. V. L. Ginzburg (Nova Science, Commack, New York, 1987), p. 180.

    Google Scholar 

  134. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. K. Koga, and S. S. Bulanov, “Lorentz–Abraham–Dirac vs Landau–Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions),” Phys. Rev. E. 84 (5), 056605 (2011). https://doi.org/10.1103/PhysRevE.84.056605

    Article  ADS  Google Scholar 

  135. C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, “Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses,” Phys. Rev. D. 60 (9), 092004 (1999). https://doi.org/10.1103/PhysRevD.60.092004

    Article  ADS  Google Scholar 

  136. J. K. Koga, T. Zh. Esirkepov, and S. V. Bulanov, “Nonlinear Thomson scattering in the strong radiation damping regime,” Phys. Plasmas. 12 (9), 093106 (2005). https://doi.org/10.1063/1.2013067

    Article  ADS  Google Scholar 

  137. N. H. Ibragimov, A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods, Nonlinear Mathematical Models, Symmetry and Invariance Principles (World Sci., Singapore, 2010).

    MATH  Google Scholar 

  138. S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Experimental observation of relativistic nonlinear Thomson scattering,” Nature. 396, 653–655 (1998). https://doi.org/10.1038/25303

    Article  ADS  Google Scholar 

  139. G. Sarri, D. J. Corvan, W. Schumaker, J. M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. G. R. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113 (22), 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801

    Article  ADS  Google Scholar 

  140. W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and D. Umstadter, “High-order multiphoton Thomson scattering,” Nat. Photonics. 11 (8), 514–520 (2017). https://doi.org/10.1038/nphoton.2017.100

    Article  Google Scholar 

  141. L. A. Gizzi, D. Giulietti, A. Giulietti, P. Audebert, S. Bastiani, J. P. Geindre, and A. Mysyrowicz, “Simultaneous measurements of hard X-rays and second-harmonic emission in fs laser-target interactions,” Phys. Rev. Lett. 76 (13), 2278–2281 (1996). https://doi.org/10.1103/PhysRevLett.76.2278

    Article  ADS  Google Scholar 

  142. J. Galy, M. Maučec, D. J. Hamilton, R. Edwards, and J. Magill, “Bremsstrahlung production with high-intensity laser matter interactions and applications,” New J. Phys. 9, 23 (2007). https://doi.org/10.1088/1367-2630/9/2/023

    Article  ADS  Google Scholar 

  143. C. Courtois, A. Compant La Fontaine, O. Landoas, G. Lidove, V. Meot, P. Morel, R. Nuter, E. Lefebvre, A. Boscheron, J. Grenier, M. M. Aleonard, M. Gerbaux, F. Gobet, F. Hannachi, G. Malka, J. N. Scheurer, and M. Tarisien, “Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses,” Phys. Plasmas. 16 (1), 013105 (2009). https://doi.org/10.1063/1.3067825

    Article  ADS  Google Scholar 

  144. A. Henderson, E. Liang, N. Riley, P. Yepes, G. Dyer, K. Serratto, and P. Shagin, “Ultra-intense gamma-rays created using the Texas Petawatt Laser,” High Energy Density Phys. 12, 46–56 (2014). https://doi.org/10.1016/j.hedp.2014.06.004

    Article  ADS  Google Scholar 

  145. J. Vyskočil, O. Klimo, and S. Weber, “Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets,” Plasma Phys. Controlled Fusion. 60 (5), 054013 (2018). https://doi.org/10.1088/1361-6587/aab4c3

    Article  ADS  Google Scholar 

  146. D. Wu, W. Yu, Y. T. Zhao, S. Fritzsche, and X. T. He, “Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions,” Matter Radiat. Extremes. 3 (6), 293–299 (2018). https://doi.org/10.1016/j.mre.2018.06.002

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author appreciates discussions of various aspects of laser plasma interaction with A. Arefiev, G.A. Bagdasarov, N.A. Bobrova, A. Brantov, S.S. Bulanov, V.Yu. Bychenkov, F. Califano, L. Chen, L.M. Chen, P. Chen, G.I. Dudnikova, E.Y. Echkina, E. Esarey, T.Z. Esirkepov, D. Farina, Y. Fukuda, V.A. Gasilov, L.V.N. Goncalves, A. Gonoskov, A.G. Gonsalves, G. M. Grittani, Y. Gu, P. Hadjisolomou, I.N. Inovenkov, T.M. Jeong, M. Jirka, M. Kando, S. Kar, Y. Kato, T. Kawachi, S. Kawata, D. R. Khikhlukha, O. Klimo, J. Koga, K. Kondo, G. Korn, C. M. Lazzarini, W.P. Leemans, J. Limpouch, M. Lontano, J. Magnusson, M. Marklund, K. Mima, M. Matys, A.Y. Molodozhentsev, M. Mori, T. Morita, G. Mourou, J. Mu, M. Murakami, S. Nakai, J. Nejdl, K. Nishihara, M. Nevrkla, O.G. Olkhovskaya, F. Pegoraro, A.S. Pirozhkov, J. Psikal, C.B. Schroeder, P.V. Sasorov, H. Suk, T. Tajima, P. Valenta, S. Weber, W. Yan, and A. Yogo.

Funding

This work was supported by the project “High Field Initiative” (CZ.02.1.01/0.0/0.0/15_003/0000449) from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bulanov.

Ethics declarations

The text was submitted by the author in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulanov, S.V. Electron Dynamics in the Field of Strong Plasma and Electromagnetic Waves: A Review. Phys. Wave Phen. 29, 1–46 (2021). https://doi.org/10.3103/S1541308X21010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21010039

Keywords:

Navigation