Skip to main content
Log in

Electron capture nuclear decay rate under compression in a confined environment

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have calculated the effect of compressing the radioactive atoms in the crystal lattice environments on their electron capture nuclear decay rates. The electronic structure calculations of solids using the density functional techniques have been used to calculate the change of electron density at the nuclei and the corresponding change of electron capture nuclear decay rate of the radioactive atoms confined to the interstitial spaces of different crystal lattices. The effects of finite nuclear size and vacuum polarization were considered in the calculations. It has been found that the calculations significantly underpredict the experimentally measured increase of electron capture nuclear decay rate under compression. The increase of decay rate due to compression-induced quantum anti-Zeno effect is generally believed to be very small because of very short duration of initial nonexponential decay time for the nuclear decays. However, this effect could be observable for the electron capture nuclear decay of \(^{\mathrm {163}}\)Ho, because of its very low decay energy. Moreover, certain models of quantum measurement indicate much longer initial nonexponential decay time and the corresponding implication on the increase of decay rate under compression is still not known. It is important to understand the large discrepancy between the measured and calculated increase of electron capture nuclear decay rate under compression and the associated role of quantum anti-Zeno effect because of their possible implications in various astrophysical and geophysical calculations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the calculated results were generated by the authors and are available upon request. There is no supplementary data sheet with this paper.]

References

  1. W. Jaskólski, Phys. Rep 271, 1 (1996)

    Article  ADS  Google Scholar 

  2. W. Bambynek, H. Behrens, M.H. Chen, B. Crasemann, M.L. Fitzpatrick, K.W.D. Ledingham, H. Genz, M. Mutterer, R.L. Intemann, Rev. Mod. Phys. 49, 77 (1977)

    Article  ADS  Google Scholar 

  3. E. Segre, C.E. Weigand, Phys. Rev. 75, 39 (1949)

    Article  ADS  Google Scholar 

  4. J.J. Kraushaar, E.D. Wilson, K.T. Bainbridge, Phys. Rev. 90, 610 (1953)

    Article  ADS  Google Scholar 

  5. H.W. Johlige, D.C. Aumann, H.J. Born, Phys. Rev. C 2, 1616 (1970)

    Article  ADS  Google Scholar 

  6. G.T. Emery, Ann. Rev. Nucl. Sci. 22, 165 (1972)

    Article  ADS  Google Scholar 

  7. A. Ray, P. Das, S.K. Saha, S.K. Das, B. Sethi, A. Mookerjee, C. BasuChaudhuri, G. Pari, Phys. Lett. B 455, 69 (1999)

    Article  ADS  Google Scholar 

  8. T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, K. Ohno, Phys. Rev. Lett. 93, 112501 (2004)

    Article  ADS  Google Scholar 

  9. P. Das, A. Ray, Phys. Rev. C 71, 025801 (2005)

    Article  ADS  Google Scholar 

  10. K.M.M. Lee, G. Steinle-Neumann, Earth Planet Sci lett 267, 628 (2008)

    Article  ADS  Google Scholar 

  11. W.K. Hensley, W.A. Bassett, J.R. Huizenga, Science 181, 1164 (1973)

    Article  ADS  Google Scholar 

  12. L.-G. Liu, C.-A. Huh, Earth Planet. Sci. Lett. 180, 163 (2000)

  13. L.I. Cheng-Bo, Z.H.O.U. Shu-Hua, L.I.U. Zhi-Yi, M.E.N.G. Qiu-Ying, Z.H.O.U. Jing, L.I. Xiao-Mei, F.U. Yuan-Yong, W.E.N. Qun-Gang, H.U. Shou-Yang, Chin. Phys. Lett. 27, 012301 (2010)

    Article  ADS  Google Scholar 

  14. www.webelement.com

  15. A. Ray, A.K. Sikdar, P. Das, S. Pathak, J. Datta, Phys. Rev. C 101, 035801 (2020)

    Article  ADS  Google Scholar 

  16. A. Ray, P. Das, S.K. Saha, A. Goswami, A. De, Phys. Lett. B 679, 106 (2009)

    Article  ADS  Google Scholar 

  17. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Lutz, WIEN2K: An Augmented Plane Wave Local Orbital Program for Calculating Cristalproperties (TechnischeUniversitat, Wien, Austria, 2001)

    Google Scholar 

  18. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, J. Chem. Phys. 152, 074101 (2020)

    Article  Google Scholar 

  19. R. W. G. Wyckoff, Crystal Structures, Vol-2, Inorganic Compounds \(\text{RX}_{n}\), \(R_{n}\text{ MX}_{2}\), \(R_{n}\text{ MX}_{3}\), Interscience Publishers, a division of John Wiley and Sons, New York, London, Sydney

  20. F. Tran, J. Stelzl, P. Blaha, J. Chem. Phys. 144, 204120 (2016)

    Article  ADS  Google Scholar 

  21. G.-X. Zhang, A.M. Reilly, A. Tkatchenko, M. Scheffler, New J. Phys. 20, 063020 (2018)

    Article  ADS  Google Scholar 

  22. Carl F. Cline, Douglas R. Stephens, J. Appl. Phys. 36, 2869 (1965)

    Article  ADS  Google Scholar 

  23. A.V. Bibikov, A.V. Avdeenkov, I.V. Bodrenko, A.V. Nokolaev, E.V. Tkalya, Phys. Rev. C 88, 034608 (2013)

    Article  ADS  Google Scholar 

  24. L. Kong, F.A. Bischoff, E.F. Valeev, Chem. Rev. 112, 75 (2012)

    Article  Google Scholar 

  25. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989)

    Google Scholar 

  26. Y. Mori, N. Niiya, K. Ukegava, T. Mizuno, K. Takarabe, A.L. Ruoff, Phys. Status Solidi B 241, 3198 (2004)

    Article  ADS  Google Scholar 

  27. A.P. Jephcoat, R.J. Hemley, H.K. Mao, R.E. Cohen, M.J. Mehl, Phys. Rev. B 37, 4727 (1988)

    Article  ADS  Google Scholar 

  28. A. Ray, P. Das, Phys. Rev. C 90, 019801 (2014)

  29. O.K. Andersen, O. Jepsen, D. Glotzl, Highlights of Condensed MatterTheory (North-Holland, New York, 1985)

    Google Scholar 

  30. O.K. Andersen, Z. Pawlowska, O. Jepsen, Phys. Rev. B 34, 5253 (1986)

    Article  ADS  Google Scholar 

  31. J. Garza, R. Vargas, A. Vela, Phys. Rev. E 58, 3949 (1998)

    Article  ADS  Google Scholar 

  32. J. Garza, R. Vargas, N. Aquino, K.D. Sen, J. Chem. Sci. 177, 379 (2005)

    Article  Google Scholar 

  33. V.M. Shabaev, J. Phys. B 26, 1103 (1993)

    Article  ADS  Google Scholar 

  34. P.J. Mohr, G. Plunien, G. Soff, Phys. Rep. 293, 227 (1998)

    Article  ADS  Google Scholar 

  35. E.A. Uehling, Phys. Rev. 48, 55 (1935)

    Article  ADS  Google Scholar 

  36. L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978)

    Article  ADS  Google Scholar 

  37. D. Home, Conceptual Foundation of Quantum Physics (Plenum, New York, 1997)

    Book  MATH  Google Scholar 

  38. L.A. Khalfin, Zh Eksp, Teor. Fiz. 33, 1371 (1957)

    Google Scholar 

  39. L.A. Khalfin, Zh Eksp, Sov. Phys. JETP 6, 1053 (1958)

    ADS  Google Scholar 

  40. A.G. Kofman, G. Kurizki, Nature (London) 405, 546 (2000)

    Article  ADS  Google Scholar 

  41. M.C. Fischer, B. Gutierrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87, 040402 (2001)

    Article  ADS  Google Scholar 

  42. A. Ray, A.K. Sikdar, Phys. Rev. C 94, 055503 (2016)

    Article  ADS  Google Scholar 

  43. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  44. G. Bellini et al., Phys. Rev. Lett. 107, 141302 (2011)

    Article  ADS  Google Scholar 

  45. E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)

    Article  ADS  Google Scholar 

  46. B. Aharmim et al., Phys. Rev. C 81, 055504 (2010)

    Article  ADS  Google Scholar 

  47. J.N. Bahcall, M.H. Pinsonneault, S. Basu, Astrophys. J. 555, 990 (2001)

    Article  ADS  Google Scholar 

  48. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  49. K.K.M. Lee, R. Jeanloz, Geophys. Lett. 30, 2212 (2003)

    ADS  Google Scholar 

  50. https://en.wikipedia.org/wiki/Earth%27s_internal_heat_budget

Download references

Acknowledgements

Two of us, NA and ML want to thank to J. Garza for his useful comments and for allowing us to use his CONFATOM code for confined many electron atoms. A. Ray acknowledges financial assistance from Science and Engineering Research Board, Government of India, Grant Nos. CRG/2020/003237 and EMR/2016/001914.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally in the preparation of the manuscript.

Corresponding author

Correspondence to A. Ray.

Additional information

Contribution to the Topical Issue “Atoms and Molecules in a Confined Environment” edited by C. N. Ramachandran, Vincenzo Aquilanti, Henry Ed Montgomery, Narayanasami Sathyamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Das, P., Sikdar, A.K. et al. Electron capture nuclear decay rate under compression in a confined environment. Eur. Phys. J. D 75, 140 (2021). https://doi.org/10.1140/epjd/s10053-021-00145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00145-0

Navigation