Skip to main content
Log in

Mechanical and Microstructural Characterization of Friction Stir-Welded AA2219: TiCp-Reinforced Composites

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Light materials having high strength-to-weight ratio plays a vital role in material science especially in the field of aerospace, marine transportation, military and structural applications. Composite serves the same. Aluminium matrix composite (AMC) is the aluminium matrix which has high strength-to-weight ratio. The purpose of the work is to investigate the mechanical properties of welded AA2219 aluminium alloy reinforced with titanium carbide particles (TiCp). Aluminium matrix is reinforced with TiCp using modified stir casting process. Optical colour graphs, XRD and EDX analysis reveal the presence of TiCp in cast AMC. Tensile test shows the ultimate tensile strength increases with the percentage of TiCp addition. Cut samples of size 100 mm X 50 mm X 6 mm cast AMC were friction stir welded using response surface modelling. Ultimate tensile strength and joint efficiency were calculated for the weld samples, and the effects of input parameters were investigated. Experimental results indicate that tool pin profile has a significant effect on tensile strength of friction stir-welded joints followed by welding speed. It is evident from the response that tool rotational speed had the least effect on ultimate tensile strength. The calculated joint efficiency of the most weld samples was more than 90% with respect to the ultimate tensile strength of the base metal. This work ensures defect free, high efficiency welded joints produced using a wide range of process parameters and recommends parameters for producing best joint tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • ASTM-E08-04 (2006) Standard test method for tension testing of metallic materials. In: Annual book of ASTM standard 2006, section 3, 03.01 Metals test method and analytical procedure, p. 90

  • Barekatain H, Kazeminezhad M, Kokabi AH (2014) Microstructure and mechanical properties in dissimilar butt friction stir welding of severely plastic deformed aluminum AA 1050 and commercially pure copper sheets. J Mater Sci Technol 30:826–834

    Article  Google Scholar 

  • Barmouz M, Kazem M, Giv B (2011) Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of micro structural, porosity, mechanical and electrical behavior. Compos Part A J Appl Sci Manuf 421:445–1453

    Google Scholar 

  • Bisadi H, Tavakoli A, Tour SM, Tour SK (2013) The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. J Mater Des 43:80–88

    Article  Google Scholar 

  • Cavaliere P, Panella F (2008) Effect of tool position on the fatigue properties of dissimilar 2024–7075 sheets joined by friction stir welding. J Mater Process Technol 206:249–255

    Article  Google Scholar 

  • Ceschini L, Boromei I, Minak G, Morri A, Tarterini F (2007) Effect of stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol% Al2O3 composite. J Compos Sci Technol 67:605–620

    Article  Google Scholar 

  • Diju Samuel G, Edwin Raja Dhas J (2017) Optimization of friction stir weld parameters using response surface method for hybrid non ferrous composites. Int J Mech Eng Technol 8(5):912–923

    Google Scholar 

  • Elangovan K, Balasubramanian V (2008) Influence of tool profile and welding speed on the formation of friction stir weld zone in AA2219 Aluminum alloy. J Mater Prod Technol 200:163–175

    Article  Google Scholar 

  • Elangovan K, Balasubramanian V, Babu S (2008) Developing an empirical relationship to predict tensile, strength of friction stir welded AA2219 aluminum alloy. JMEPEG 17:820–830

    Article  Google Scholar 

  • Ghosh M Husain, Md M, Kumar K, Kailas SV (2013) Friction stir-welded dissimilar aluminum alloys: microstructure, mechanical properties, and physical state. J Mater Eng Perform 22:3890–3901

    Article  Google Scholar 

  • Gopalakrishnan S, Murugan N (2011) Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite. Mater Des 321:462–467

    Article  Google Scholar 

  • Guo JF, Chen HC, Sun CN, Bi G, Sun ZJ (2014) Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. J Mater Des 56:185–192

    Article  Google Scholar 

  • Jenkins HDS, Edwin RDJ (2014) Processing and characterization of AA2219 TiCp Reinforced composite. Int J Appl Eng Res 26:8989–8995

    Google Scholar 

  • Karthikeyan L, Senthilkumar VS, Padmanabhan KA (2010) On the role of process variables in the friction stir processing of cast aluminum A319 alloy. J Mater Des 31:761–771

    Article  Google Scholar 

  • Kim D, Badarinarayan H, Kim JH (2010) Numerical simulation of friction stir butt welding process for AA5083-H18 Sheets. Eur J Mech A Solids 29:204–215

    Article  Google Scholar 

  • Koilraj M, Sundareswaran V, Vijayan S, Koteswara Rao SR (2012) Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083—optimization of process parameters using Taguchi technique. J Mater Des 42:1–7

    Article  Google Scholar 

  • Kumar K, Kailas SV (2008) On the role axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. J Mater Des 29:791–798

    Article  Google Scholar 

  • Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R50:1–78

    Article  Google Scholar 

  • Nami, Adgi H, Sharifitabar M, Shamabadi H (2011) Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite. J Mater Des 322:976–983

    Article  Google Scholar 

  • Necat A, Rasit K (2006) Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. J Mater Des 27:625–631

    Article  Google Scholar 

  • Rambabu G, Balaji ND, Venkata Rao CH, Srinivasa RK, Madhusudan RG (2015) Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Defence Technol 11:330–337

    Article  Google Scholar 

  • Shanavas S, Edwin J, Dhas R (2017) Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology. Trans Nonferrous Met Soc China 27:2334–2344

    Article  Google Scholar 

  • Srinavasu R, Rao S, Madhusudhan Reddy G, Srinivasa Rao K (2015) Friction stir surfacing of cast A356 aluminium-slicon alloy with boron carbide and molybdenum disulfide powder. Defence Technol 11:140–146

    Article  Google Scholar 

  • Srinivasa RP, Sivadasan KG, Balasubramanian PK (1996) Structure-property correlation on AA 2219 aluminium alloy weldments. Bull Mater Sci 19:549–557

    Article  Google Scholar 

  • Su JQ, Nelson TW, Misha R, Mahoney M (2003) Microstructural investigation of friction stir welded 7075-T651aluminium. Acta Materialia. 27:305–316

    Google Scholar 

  • Thomas WM (1991) Friction stir welding. In: International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8. US Patent No. 5: 460, pp 317

  • Weifeng X, Liu J, Zhu H, Li F (2013) Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy. J Mater Des 47:599–606

    Article  Google Scholar 

  • Won BLKK, Eon YM, Jung SB (2003) Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy. Mater Sci Technol 19(1513):1518

    Google Scholar 

  • Zakikhani P, Zahari R, Sultan MTH, Majid DL (2014) Extraction and preparation of bamboo fibre-reinforced composites. Mater Des 63:820–828

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Edwin Raja Dhas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwin Raja Dhas, J., Dhas, J.H. Mechanical and Microstructural Characterization of Friction Stir-Welded AA2219: TiCp-Reinforced Composites. Iran J Sci Technol Trans Mech Eng 45, 567–579 (2021). https://doi.org/10.1007/s40997-020-00381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-020-00381-6

Keywords

Navigation