Skip to main content
Log in

Gradient estimates for divergence form parabolic systems from composite materials

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider divergence form, second-order strongly parabolic systems in a cylindrical domain with a finite number of subdomains under the assumption that the interfacial boundaries are \(C^{1,\text {Dini}}\) and \(C^{\gamma _{0}}\) in the spatial variables and the time variable, respectively. Gradient estimates and piecewise \(C^{1/2,1}\)-regularity are established when the leading coefficients and data are assumed to be of piecewise Dini mean oscillation or piecewise Hölder continuous. Our results improve the previous results in Fan et al. (Electron J Differ Equ 2013:1–24, 2013) and Li and Li (Sci China Math 60(11):2011–2052, 2017) to a large extent, and appear to be the first of its kind for time-dependent subdomains. As a byproduct, we obtain optimal regularity of weak solutions to parabolic transmission problems with \(C^{1,\mu }\) or \(C^{1,\text {Dini}}\) interfaces. This gives an extension of a recent result in Caffarelli et al. (Regularity for \(C^{1,\alpha }\) interface transmission problems. arXiv:2004.07322 [math.AP]) to parabolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The authors would like to thank Prof. Fanghua Lin for pointing out this reference.

References

  1. Ancona, A.: Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Hal̈m Brezis). J. Funct. Anal. 257, 2124–2158 (2009)

    Article  MathSciNet  Google Scholar 

  2. Babus̆ka, I., Andersson, B., Smith, P., Levin, K.: Damage analysis of fiber composites. I. Statistical analysis on fiber scale. Comput. Methods Appl. Mech. Eng. 172, 27–77 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bonnetier, E., Vogelius, M.: An elliptic regularity result for a composite medium with touching fibers of circular cross-section. SIAM J. Math. Anal. 31, 651–677 (2000)

    Article  MathSciNet  Google Scholar 

  4. Brezis, H.: On a conjecture of J. Serrin. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19(4), 335–338 (2008)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L., Soria-Carro, M., Stinga, P.: Regularity for \(C^{1,\alpha }\) interface transmission problems. arXiv:2004.07322 [math.AP]

  6. Campanato, S.: Proprietá di hôlderianitá di alcune classi di funzioni. (Italian). Ann. Scuola Norm. Sup. Pisa. 17(3), 175–188 (1963)

    MathSciNet  MATH  Google Scholar 

  7. Chipot, M., Kinderlehrer, D., Vergara-Caffarelli, G.: Smoothness of linear laminates. Arch. Ration. Mech. Anal. 96(1), 81–96 (1986)

    Article  MathSciNet  Google Scholar 

  8. Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2), 601–628 (1990)

    Article  MathSciNet  Google Scholar 

  9. Dong, H.: Gradient estimates for parabolic and elliptic systems from linear laminates. Arch. Ration. Mech. Anal. 205, 119–149 (2012)

    Article  MathSciNet  Google Scholar 

  10. Dong, H.: A simple proof of regularity for \(C^{1,\alpha }\) interface transmission problems. Ann. of Appl. Math. https://doi.org/10.4208/aam.OA-2020-0002, arXiv: 2004.09365v1 [math.AP]

  11. Dong, H., Escauriaza, L., Kim, S.: On \(C^{1}, C^{2}\), and weak type-(1,1) estimates for linear elliptic operators: part II. Math. Ann. 370(1–2), 447–489 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dong, H., Escauriaza, L., Kim, S.: On \(C^{1/2,1}, C^{1,2}\), and \(C^{0,0}\) estimates for linear parabolic operators. arXiv: 1912.08762v1 [math.AP]

  13. Dong, H., Kim, D.: On \(L_{p}\) estimates for elliptic and Parabolic equations with \(A_{p}\) weights. Trans. Am. Math. Soc. 370(7), 5081–5130 (2018)

    Article  Google Scholar 

  14. Dong, H., Kim, D.: Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular and irregular domains. J. Funct. Anal. 261, 3279–3327 (2011)

    Article  MathSciNet  Google Scholar 

  15. Dong, H., Kim, D.: Parabolic and elliptic systems in divergence form with variably partially BMO coefficients. SIAM J. Math. Anal. 43(3), 1075–1098 (2011)

    Article  MathSciNet  Google Scholar 

  16. Dong, H., Kim, S.: On \(C^{1}, C^{2}\), and weak type-(1, 1) estimates for linear elliptic operators. Commun. Partial Differ. Equ. 42(3), 417–435 (2017)

    Article  Google Scholar 

  17. Dong, H., Xu, L.: Gradient estimates for divergence form elliptic systems arising from composite material. SIAM J. Math. Anal. 59(3), 2444–2478 (2019)

    Article  MathSciNet  Google Scholar 

  18. Fan, J., Kim, K., Nagayasu, S., Nakamura, G.: A gradient estimate for solutions to parabolic equations with discontinuous coefficients. Electron. J. Differ. Equ. 2013, 1–24 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gancedo, F., García-Juárez, E.: Regularity results for viscous 3D Boussinesq temperature fronts. Commun. Math. Phys. 376, 1705–1736 (2020)

    Article  MathSciNet  Google Scholar 

  20. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  21. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993)

    Google Scholar 

  22. Krylov, N.V.: Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J. Funct. Anal. 250(2), 521–558 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc., River Edge (1996)

    Book  Google Scholar 

  24. Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. Mat. Pura Appl. 148(4), 77–99 (1987)

    Article  MathSciNet  Google Scholar 

  25. Li, H., Li, Y.: Gradient estimates for parabolic systems from composite material. Sci. China Math. 60(11), 2011–2052 (2017)

    Article  MathSciNet  Google Scholar 

  26. Li, Y., Nirenberg, L.: Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56, 892–925 (2003)

    Article  MathSciNet  Google Scholar 

  27. Li, Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153, 91–151 (2000)

    Article  MathSciNet  Google Scholar 

  28. Lin, F.-H.: Variational problems with free interfaces. Calc. Var. Partial Differ. Equ. 1(2), 149–168 (1993)

    Article  MathSciNet  Google Scholar 

  29. Xiong, J., Bao, J.: Sharp regularity for elliptic systems associated with transmission problems. Potential Anal. 39(2), 169–194 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her careful very reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dong.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Dong was partially supported by the NSF under Agreement DMS-1600593.

Appendix

Appendix

In the appendix, we prove a generalization of Lemma 3.5. We say that \(w: \mathbb R^{d+1}\rightarrow [0,\infty )\) belongs to \(A_{p}\) for \(p\in (1,\infty )\) if

$$\begin{aligned} \sup _{Q}\frac{w(Q)}{|Q|}\left( \frac{w^{\frac{-1}{p-1}}(Q)}{|Q|}\right) ^{p-1}<\infty , \end{aligned}$$

where the supremum is taken over all parabolic cylinders Q in \({\mathbb {R}}^{d+1}\). The value of the supremum is the \(A_{p}\) constant of w, and will be denoted by \([w]_{A_p}\).

We consider the parabolic systems on \({\mathcal {Q}}:=(-T,0)\times {\mathcal {D}}\), where \({\mathcal {D}}\) is a Reifenberg flat domain and the boundary \(\partial {\mathcal {D}}\) satisfies the following assumption with a parameter \(\gamma _0\in (0,1/4)\) to be specified later.

Assumption 8.1

(\(\gamma _0\)) There exists a constant \(r_{0}\in (0,1]\) such that the following conditions hold.

  1. (1)

    In the interior of \({\mathcal {D}}\), \(A^{\alpha \beta }\) satisfy (3.7) in some coordinate system depending on \((t_{0},x_0)\) and r.

  2. (2)

    For any \(x_{0}\in \partial {\mathcal {D}}\), \(t\in {\mathbb {R}}\), and \(r\in (0,r_{0}]\), there is a coordinate system depending on \((t_{0},x_0)\) and r such that in this new coordinate system, we have

    $$\begin{aligned} \{(y',y^{d}): x_0^{d}+\gamma _{0}r<y^{d}\}\cap B_{R}(x_0)\subset {\mathcal {D}}\cap B_{R}(x_0)\subset \{(y',y^{d}): x_0^{d}-\gamma _{0}r<y^{d}\}\cap B_{R}(x_0) \end{aligned}$$

    and

    $$\begin{aligned} \fint _{Q_{r}^{-}(z_{0})}|A(t,x)-(A)_{Q^{-'}_{r}(z'_{0})}|\,dx\ dt\le \gamma _{0}, \end{aligned}$$

    where \((A)_{Q^{-'}_{r}(z'_{0})}=\fint _{Q^{-'}_{r}(z'_{0})}A(z',x^{d})\,dz'\).

Lemma 8.2

Let \(p\in (1,\infty )\) and w be an \(A_p\) weight. There exists a constant \(\gamma _0\in (0,1/4)\) depending on d, p, \(\nu \), \(\Lambda \), and \([w]_{A_p}\) such that, under Assumption 8.1, for any \(u\in {\mathcal {H}}_{p,w}^{1}((-T,0)\times {\mathcal {D}})\) satisfying

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {P}}u-\lambda u={\text {div}}f&{}\text{ in }~{\mathcal {Q}},\\ u=0&{}\text{ on }~\partial _p {\mathcal {Q}}, \end{array}\right. } \end{aligned}$$
(8.1)

where \(\lambda \ge 0\) and \(f\in L_{p,w}({\mathcal {Q}})\), we have

$$\begin{aligned} \Vert u\Vert _{{\mathcal {H}}_{p,w}^{1}({\mathcal {Q}})}\le N\Vert f\Vert _{L_{p,w}({\mathcal {Q}})}, \end{aligned}$$

where \(N=N(n,d,p,\nu ,\Lambda ,[w]_{A_{p}},r_{0},T)\). Moreover, for any \(f\in L_{p,w}({\mathcal {Q}})\), (8.1) admits a unique solution \(u\in {\mathcal {H}}_{p,w}^{1}({\mathcal {Q}})\).

Proof

The case when \(\lambda >\lambda _{0}\) is proved in [13, Theorem 7.2 and Section 8], where \(\lambda _{0}>0\) is a sufficiently large constant depending on \(n,d,p,\nu ,\Lambda ,[w]_{A_{p}}\) and \(r_{0}\). For \(0\le \lambda \le \lambda _{0}\), we set

$$\begin{aligned} v:=ue^{-\lambda _{0}t}. \end{aligned}$$

Then we have

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {P}}v-(\lambda +\lambda _{0})v=e^{-\lambda _{0}t}{\text {div}}f&{} \text{ in }~{\mathcal {Q}},\\ v=0&{} \text{ on }~\partial _p {\mathcal {Q}}. \end{array}\right. } \end{aligned}$$

By using [13, Theorem 7.2], we have

$$\begin{aligned} \Vert v\Vert _{{\mathcal {H}}_{p,w}^{1}({\mathcal {Q}})}\le N\Vert e^{-\lambda _{0}t}f\Vert _{L_{p,w}({\mathcal {Q}})}\le N\Vert f\Vert _{L_{p,w}({\mathcal {Q}})}, \end{aligned}$$

where \(N=N(n,d,p,\nu ,\Lambda ,[w]_{A_{p}},r_{0},T)\). Hence, we obtain

$$\begin{aligned} \Vert u\Vert _{{\mathcal {H}}_{p,w}^{1}({\mathcal {Q}})}=\Vert ve^{\lambda _{0}t}\Vert _{{\mathcal {H}}_{p,w}^{1}({\mathcal {Q}})}\le N\Vert f\Vert _{L_{p,w}({\mathcal {Q}})}. \end{aligned}$$

The theorem is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Xu, L. Gradient estimates for divergence form parabolic systems from composite materials. Calc. Var. 60, 98 (2021). https://doi.org/10.1007/s00526-021-01927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01927-5

Mathematics Subject Classification

Navigation