Skip to main content
Log in

Analysis of Study Results of the Polar Coronal Hole on the Sun According to Observations in the Microwave Wavelength Range

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An overview is presented of the main results of the study of the polar coronal hole over the North pole of the Sun based on observations of the solar eclipse on March 29, 2006, using the RATAN-600 radio telescope in a wide cm-range of wavelengths (1.03, 1.38, 2.7, 6.2, 13.0, 30.7 cm) along with observational and theoretical data about the properties of Solar coronal holes published by various authors. The results obtained are discussed: the distribution of brightness temperatures of polar coronal holes over the North pole of the Sun at distances of 1.005–2.0 in units of the Sun optical disk radius from the center of the solar disk; the increase in microwave radiation of polar coronal holes recorded at short wavelengths; the identity of the temperature properties of the polar coronal holes and low-latitude coronal holes on the Sun during the period of minimum solar activity. Comparison of the obtained brightness temperatures of the polar coronal hole with the brightness temperatures of large low-latitude coronal holes at similar wavelengths observed earlier (1973–1976, 1984–1987 yr) were done. This comparison has indicated an identity of the temperature properties of coronal holes regardless of their location on the Sun and the organization of coronal holes during the period of minimum solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. F. Bachurin, N. N. Eriushev, and L. I. Tsvetkov, Izv. Krym. Astrofiz. Obs. 52, 180 (1974).

    ADS  Google Scholar 

  2. G. A. Dulk and K. V. Sheridan, Solar Phys. 36, 191 (1974).

    Article  ADS  Google Scholar 

  3. F. L. Shimabukuro, W. J. Wilson, T. T. Mori, and P. L. Smith, Solar Phys. 40, 359 (1975).

    Article  ADS  Google Scholar 

  4. A. N. Babin, S. Gopasiuk, V. A. Efanov, V. A. Kotov, I. G. Moiseev, and N. S. Nesterov, Izv. Krym. Astrofiz. Obs. 55, 3 (1976).

    ADS  Google Scholar 

  5. V. A. Efanov, I. G. Moiseev, N. S. Nesterov, and R. T. Stewart, IAU Symp. 86, 141 (1980).

  6. Z.Wang, E. J. Schmahl, and M. R. Kundu, Solar Phys. 111, 419 (1987).

    Article  ADS  Google Scholar 

  7. V. N. Borovik, Lect. Notes Phys. 432, 185 (1994).

  8. N. Gopalswamy, K. Shibasaki, C. DeForest, B. Bromage, and G. Del Zanna, in Synoptic Solar Physics, ASP Conf. Ser. 140, 363 (1998).

    Google Scholar 

  9. N. Gopalswamy, K. Shibasaki, B. J. Thompson, and C. De Forest, Geophys. Res. 104 (A5), 9767 (1999).

    Article  ADS  Google Scholar 

  10. S. Pohjolainen, Astron. Astrophys. 361, 349 (2000).

    ADS  Google Scholar 

  11. A. Riehokainen, S. Urpo, E. Valtaoja, V. I. Makarov, L. V. Makarova, and A. G. Tlatov, Astron. Astrophys. 366, 676 (2001).

    Article  ADS  Google Scholar 

  12. S. R. Granmer, Living Rev. Solar Phys. 6, 3 (2009).

    ADS  Google Scholar 

  13. G. A. Dulk, K. V. Sheridan, S. F. Smerd, and G. L. Withbroe, Solar Phys. 52, 349 (1977).

    Article  ADS  Google Scholar 

  14. R. H. Munro and B. V. Jackson, Astrophys. J. 213, 874 (1977).

    Article  ADS  Google Scholar 

  15. V. N. Borovik, M. S. Kurbanov, M. A. Livshits, and B. I. Ryabov, Sov. Astron. 34, 522 (1990).

    ADS  Google Scholar 

  16. M. W. Ewell, Jr., H. Zirin, and J. B. Jensen, and T. S. Bastian, Astrophys. J. 403, 426 (1993).

    Article  ADS  Google Scholar 

  17. V. M. Bogod, O. A. Golubchina, G. N. Zhekanis, A. N. Korzhavin, V. S. Kotel’nikov, N. A. Nizhel’skij, and P. G. Tsybulev, Astrophys. Bull. 62, 360 (2007).

    Article  ADS  Google Scholar 

  18. O. A. Golubchina and G. S. Golubchin, Astrofiz. Issled. (Izv. Spets. Astrofiz. Obs.) 14, 125 (1981).

  19. V. V. Zheleznyakov, Radio Emission of the Sun and Planets (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  20. V. V. Sobolev, The Course of Theoretical Astrophysics (Moscow, Nauka, 1967) [in Russian].

    Google Scholar 

  21. O. A. Golubchina, A. N. Korzhavin, and S. Tokhchukova, Astrophys. Bull. 66, 488 (2011).

    Article  ADS  Google Scholar 

  22. N. L. Reginald, O. C. St. Cyr, J. M. Davila, D. M. Ra-bin, M. Guhathakurta, and D. M. Hassler, Solar Phys. 260, 347 (2009).

    Article  ADS  Google Scholar 

  23. O. A. Golubchina, V. M. Bogod, A. N. Korzhavin, N. N. Bursov, and S. Kh. Tokhchukova, Astrophys. Bull. 63, 36 (2008).

    ADS  Google Scholar 

  24. O. A. Golubchina and A. N. Korzhavin, Astrophys. Bull. 68, 219 (2013).

    Article  ADS  Google Scholar 

  25. L. A. Fisk and N. A. Schwadron, Astrophys. J. 560, 425 (2001).

    Article  ADS  Google Scholar 

  26. V. I. Abramenko, L. A. Fisk, and V. B. Yurchyshyn, Astrophys. J. 641, L65 (2006).

    Article  ADS  Google Scholar 

  27. O. A. Golubchina, Geomagn. Aeron. 57, 964 (2017).

    Article  ADS  Google Scholar 

  28. C. L. Selhorst, A. V. R. Silva, J. E. R. Costa, and K. Shibasaki, Astron. Astrophys. 401, 1143 (2003).

    Article  ADS  Google Scholar 

  29. C. L. Selhorst, A. V. R. Silva, and J. E. R. Costa, Astron. Astrophys. 440, 367 (2005).

    Article  ADS  Google Scholar 

  30. K. Shibasaki, Publ. Astron. Soc. Jpn. 65, S17 (2013).

    Article  Google Scholar 

  31. T. Kosugi, I. Masato, and R. Shibasaki, Publ. Astron. Soc. Jpn. 38, 1 (1986).

    ADS  Google Scholar 

  32. J. E. Vernazza, E. H. Avrett, and R. Loeser, Astrophys. J. Suppl. 45, 635 (1981).

    Article  Google Scholar 

  33. A. J. Oliveira e Silva, C. L. Selhorst, P. J. A. Simões, and C. G. Giménez de Castro, Astron. Astrophys. 592, A91 (2016).

    Article  Google Scholar 

  34. J. M. Pasachoff, V. Rusin, M. Druckmuller, and M. Saniga, Astrophys. J. 665, 824 (2007).

    Article  ADS  Google Scholar 

  35. J. M. Pasachoff, V. Rusin, M. Druckmuller, H. Druckmullerova, et al., Astrophys. J. 682, 638 (2008).

    Article  ADS  Google Scholar 

  36. Y.-M. Wang, J. B. Biersteker, N. R. Sheeley, Jr., S. Koutchmy, J. Mouette, and M. Druckmuller, Astrophys. J. 660, 882 (2007).

    Article  ADS  Google Scholar 

  37. G. Withbroe and Y. Wang, Solar Phys. 27, 394 (1972).

    Article  ADS  Google Scholar 

  38. R. Munro and G. Withbroe, Astrophys. J. 176, 511 (1972).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank the group of RATAN-600 radio engineers which has enabled successful observation of solar eclipse on March 29, 2006, on precision radio equipment: N.A. Nizhel’skij, G.N. Zhekanis, P.G. Tsybulev, N.N. Bursov, and S.Kh. Tokhchukova for the help in primary processing of the received data, and also Topchilo N.A. for help in the design of figures.

Funding

The work was performed within the SAO RAS state assignment in the part “Conducting Fundamental Science Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Golubchina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubchina, O.A. Analysis of Study Results of the Polar Coronal Hole on the Sun According to Observations in the Microwave Wavelength Range. Astron. Rep. 65, 322–330 (2021). https://doi.org/10.1134/S1063772921050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921050036

Navigation