Skip to main content
Log in

An EPR and VTVH MCD spectroscopic investigation of the nitrogenase assembly protein NifB

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

NifB, a radical SAM enzyme, catalyzes the biosynthesis of the L cluster (Fe8S9C), a structural homolog and precursor to the nitrogenase active-site M cluster ([MoFe7S9C·R-homocitrate]). Sequence analysis shows that NifB contains the CxxCxxxC motif that is typically associated with the radical SAM cluster ([Fe4S4]SAM) involved in the binding of S-adenosylmethionine (SAM). In addition, NifB houses two transient [Fe4S4] clusters (K cluster) that can be fused into an 8Fe L cluster concomitant with the incorporation of an interstitial carbide ion, which is achieved through radical SAM chemistry initiated at the [Fe4S4]SAM cluster upon its interaction with SAM. Here, we report a VTVH MCD/EPR spectroscopic study of the L cluster biosynthesis on NifB, which focuses on the initial interaction of SAM with [Fe4S4]SAM in a variant NifB protein (MaNifBSAM) containing only the [Fe4S4]SAM cluster and no K cluster. Titration of MaNifBSAM with SAM reveals that [Fe4S4]SAM exists in two forms, labeled \(\left[ {{\text{Fe}}_{{4}} {\text{S}}_{{4}} } \right]_{{{\text{SAM}}^{{\text{A}}} }}^{ + }\) and \(\left[ {{\text{Fe}}_{{4}} {\text{S}}_{{4}} } \right]_{{{\text{SAM}}^{{\text{B}}} }}^{{2 + }}\). It is proposed that these forms are involved in the synthesis of the L cluster. Of the two cluster types, only \(\left[ {{\text{Fe}}_{{4}} {\text{S}}_{{4}} } \right]_{{{\text{SAM}}^{{\text{B}}} }}^{{2 + }}\) initially interacts with SAM, resulting in the generation of Z, an S = ½ paramagnetic [Fe4S4]SAM/SAM complex.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Broderick JB, Duffus BR, Duschene KS, Shepard EM (2014) Radical S-adenosylmethionine enzymes. Chem Rev 114:4229–4317

    Article  CAS  Google Scholar 

  2. Hu Y, Ribbe MW (2016) Biosynthesis of the metalloclusters of nitrogenases. Annu Rev Biochem 85:455–483

    Article  CAS  Google Scholar 

  3. Burgess BK, Lowe DJ (1996) Mechanism of Molybdenum Nitrogenase. Chem Rev 96:2983–3011

    Article  CAS  Google Scholar 

  4. Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114(8):4041–4062

    Article  CAS  Google Scholar 

  5. Hoffman BM, Lukoyanov D, Dean DR, Seefeldt LC (2013) Nitrogenase: a draft mechanism. Acc Chem Res 46(2):587–595

    Article  CAS  Google Scholar 

  6. Rees DC, Kim J, Woo D (1993) X-ray crystal structure of the nitrogenase molybdenum–iron protein from Clostridium pasteurianum at 3.0-Å resolution. Biochemistry 32:7104–7115

    Article  Google Scholar 

  7. Einsle O, Tezca FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  CAS  Google Scholar 

  8. Spatzal T, Aksoyoglu M, Zhand L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactror. Science 334:940

    Article  CAS  Google Scholar 

  9. Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334:974–977

    Article  CAS  Google Scholar 

  10. Sickerman NS, Ribbe MW, Hu Y (2017) Nitrogenase cofactor assembly: an elemental inventory. Acc Chem Res 50(11):2834–2841

    Article  CAS  Google Scholar 

  11. Hu Y, Corbett MC, Fay AW, Webber JA, Hodgson KO, Hedman B, Ribbe MW (2006) FeMo cofactor maturation on NifEN. Proc Natl Acad Sci U S A 103(46):17119–17124

    Article  CAS  Google Scholar 

  12. Yoshizawa J, Blank MA, Fay AW, Lee CC, Wiig JA, Hu Y, Hodgson KO, Hedman B, Ribbe MW (2009) Optimization of FeMoco maturation on NifEN. J Am Chem Soc 131:9321–9325

    Article  CAS  Google Scholar 

  13. Kaiser JT, Hu Y, Wiig JA, Rees DC, Ribbe MW (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331:91–94

    Article  CAS  Google Scholar 

  14. Fay AW, Wiig JA, Lee CC, Hu Y (2015) Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens. Proc Natl Acad Sci U S A 112(48):14829–14833

    Article  CAS  Google Scholar 

  15. Rettberg LA, Wilcoxen J, Lee CC, Stiebritz MT, Tanifuji K, Britt RD, Hu Y (2018) Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB. Nat Comm 9:2824–2832

    Article  Google Scholar 

  16. Wiig JA, Hu Y, Ribbe MW (2011) NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. Proc Natl Acad Sci U S A 108:8623–8627

    Article  CAS  Google Scholar 

  17. Schatz PN, McCaffrey AJ (1969) The Faraday effect. Q Rev Chem Soc 23:552–584

    Article  CAS  Google Scholar 

  18. Johnson MK, Thomson AJ, Robinson AE, Rao KK, Hall DO (1981) Low-temperature magnetic circular dichroism spectra and magnetisation curves of 4Fe clusters in iron–sulphur proteins from Chromatium and Clostridium pasteurianum. Biochim Biophys Acta 667:433–451

    Article  CAS  Google Scholar 

  19. Johnson MK (2000) CD and MCD Spectroscopy. In: Que L (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, pp 233–286

    Google Scholar 

  20. Conover RC, Kowal AT, Fu W, Park J-B, Aono S, Adams MWW, Johnson MK (1990) Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem 265(15):8533–8541

    Article  CAS  Google Scholar 

  21. Onate YA, Finnegan MG, Hales BJ, Johnson MK (1993) Variable temperature magnetic circular dichroism studies of reduced nitrogenase iron proteins and [4Fe-4S]+ synthetic analog clusters. Biochim Biophys Acta 1164:113–123

    Article  CAS  Google Scholar 

  22. Johnson MK, Robinson AE, Thomson AJ (1982) Low-temperature magnetic circular dichroism studies of iron–sulfur proteins. In: Spiro TG (ed) Iron–sulfur proteins. Wiley-Interscience, New York, pp 367–406

    Google Scholar 

  23. Broderick JB, Duderstadt RE, Fernandez DC, Wojtuszewski K, Henshaw TF, Johnson Michael K (1997) Pyruvate formate-lyase activating enzyme is an iron–sulfur protein. J Am Chem Soc 119:7396–7397

    Article  CAS  Google Scholar 

  24. Broderick JB, Henshaw TF, Cheek J, Wojtuszewski K, Smith SR, Trojan MR, McGhan RM, Kopf A, Kibbey M, Broderick WE (2000) Pyruvate formate-lyase-activating enzyme: strictly anaerobic isolation yields active enzyme containing a [3Fe–4S]. Biochem Biophys Res Commun 269:451–456

    Article  CAS  Google Scholar 

  25. Kathirvelu V, Perche-Letuvee P, Latour J-M, Atta M, Forouhar F, Gambarelli S, Garcia-Serres R (2017) Spectroscopic evidence for cofactor–substrate interaction in the radical-SAM enzyme TYW1. Dalton Trans 46:13211–13219

    Article  CAS  Google Scholar 

  26. Walsby CJ, Hong W, Broderick WE, Cheek J, Ortillo D, Broderick JB, Hoffman BM (2002) Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124(12):3143–3151

    Article  CAS  Google Scholar 

  27. Horitani M, Byer AS, Shisler K, Chandra T, Broderick JB, Hoffman BM (2015) Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3 aminomutase show the 5′-dAdo• “free radical” is never free. J Am Chem Soc 137:7111–7121

    Article  CAS  Google Scholar 

  28. Horitani M, Shisler K, Broderick WE, Hutcheson RU, Duschene KS, Marts AR, Hoffman BM, Broderick JB (2016) Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond. Science 352(6287):822–825

    Article  CAS  Google Scholar 

  29. Broderick WE, Hoffman BM, Broderick JB (2018) Mechanism of radical initiation in the radical S-Adenosyl-l-methionine superfamily. Acc Chem Res 51:2611–2619

    Article  CAS  Google Scholar 

  30. Chen D, Walsby CJ, Hoffman BM, Frey PA (2003) Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe–4S] center in lysine 2,3-aminomutase. J Am Chem Soc 125:11788–11789

    Article  CAS  Google Scholar 

  31. Vey JL, Drennan CL (2011) Structural insights into radical generation by the radical SAM superfamily. Chem Rev 111:2487–2506

    Article  CAS  Google Scholar 

  32. Vey JL, Yang Z-Y, Li M, Broderick WE, Broderick JB, Drennan CL (2008) Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc Natl Acad Sci 105(42):16137–16141

    Article  CAS  Google Scholar 

  33. Brereton PS, Duderstadt RE, Staples CR, Johnson Michael K, Adams MWW (1999) Effect of serinate ligation at each of the iron sites of the [Fe4S4] cluster of pyrococcus furiosus ferredoxin on the redox, spectroscopic, and biological properties. Biochemistry 38:10594–10605

    Article  CAS  Google Scholar 

  34. Frey PA, Hegeman AD, Ruzicka FJ (2008) The radical SAM superfamily. Crit Rev Biochem Mol Biol 43:63–88

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by NIH-NIGMS Grant GM67626 (to MWR and YH)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparations were performed by LR, KT, JGR, MWR and YH. Data collection and analysis were performed by KR and BH. The first draft of the manuscript was written by BH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Markus W. Ribbe, Yilin Hu or Brian J. Hales.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Discussion of the origin of MCD spectral intensities; Figures SF1 and SF2 (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupnik, K., Rettberg, L., Tanifuji, K. et al. An EPR and VTVH MCD spectroscopic investigation of the nitrogenase assembly protein NifB. J Biol Inorg Chem 26, 403–410 (2021). https://doi.org/10.1007/s00775-021-01870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01870-y

Keywords

Navigation