Skip to main content
Log in

Improving the Discrete-Modulated Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with Quantum Scissors

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new scheme to strengthen the performance of the discrete-modulated continuous-variable measurement-device-independent quantum key distribution (DM-CV-MDI-QKD) protocol by introducing a quantum scissors (QS) operation to Bob’s side. According to the equivalent one-way scheme of the protocol, we further investigate the success probability of the QS operation, and analyze the security of the DM-CV-MDI-QKD equipped with this operation in the asymptotic case. Simulation results show that the QS operation can indeed effectively improve the performance of the existing protocol, and compared with the scheme without QS operation, our proposed scheme has a higher secret key rate and a longer secure transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  2. Qi, B., Gunther, H., Evans, P.G., Williams, B.P., Camacho, R.M., Peters, N.A.: Experimental passive-state preparation for continuous-variable quantum communications. Phys. Rev. Appl. 13, 054065 (2020)

    Article  ADS  Google Scholar 

  3. Kleis, S., Steinmayer, J., Derksen, R.H., Schaeffer, C.G.: Experimental investigation of heterodyne quantum key distribution in the S-band or L-band embedded in a commercial C-band DWDM system. Opt. Express 27, 12 (2019)

    Article  Google Scholar 

  4. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N. J., Ralph, T. C., Shapiro, J. H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 2 (2012)

    Article  Google Scholar 

  5. Warke, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of three quantum key distribution protocols. Quantum Inf. Process. 19, 407 (2020)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptology 5, 3 (1992)

    Article  MATH  Google Scholar 

  7. Wang, J.Y., Yang, B., Liao, S.K., Zhang, L., Shen, Q., Hu, X.F., Wu, J.C., Yang, S.J., Jiang, H., Tang, Y. L., et al.: Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photon. 7, 5 (2013)

    Article  Google Scholar 

  8. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., et al.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007)

    Article  ADS  Google Scholar 

  9. Ziebell, M., Persechino, M., Harris, N., Galland, C., Marris-Morini, D., Vivien, L., Diamanti, E., Grangier, P.: Towards on-chip continuous-variable quantum key distribution. In: 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, paper JSV-4.2. Optical Society of America (2015)

  10. Zhang, G., Haw, J.Y., Cai, H., Xu, F., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Ser, W., Kwek, L.C., Liu, A.Q.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photon. 13, 839 (2019)

    Article  ADS  Google Scholar 

  11. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantumKey distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  12. Opatrný, T., Kurizki, G., Welsch, D.G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302 (2000)

    Article  ADS  Google Scholar 

  13. Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805 (2005)

    Article  ADS  Google Scholar 

  14. Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73, 042310 (2006)

    Article  ADS  Google Scholar 

  15. Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)

    Article  ADS  Google Scholar 

  16. Yang, Y., Li, F.L.: Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315 (2009)

    Article  ADS  Google Scholar 

  17. Navarrete-Benlloch, C., García-Patrón, R., Shapiro, J.H., Cerf, N.J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86, 012328 (2019)

    Article  ADS  Google Scholar 

  18. Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99, 032327 (2019)

    Article  ADS  Google Scholar 

  19. Ye, W., Zhong, H., Liao, Q., Huang, D., Hu, L.Y., Guo, Y.: Improvement of self-referenced continuous-variable quantum key distribution with quantum photon catalysis. Opt. Express 27, 12 (2019)

    Google Scholar 

  20. Eaton, M., Nehra, R., Pfister, O.: Non-gaussian and Gottesman-Kitaev-Preskill state preparation by photon catalysis. New J. Phys. 21, 113034 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hu, L.Y., Al-amri, M., Liao, Z.Y., Zubairy, M.S.: Continuous-variable quantum key distribution with non-Gaussian operations. Phys. Rev. A 102, 012608 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012)

    Article  ADS  Google Scholar 

  23. Zhang, H., Fang, J., He, G.Q.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86, 022338 (2012)

    Article  ADS  Google Scholar 

  24. Xu, B.J., Tang, C.M., Chen, H., Zhang, W.Z., Zhu, F.C.: Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 87, 062311 (2013)

    Article  ADS  Google Scholar 

  25. Bai, D.Y., Huang, P., Ma, H.X., Wang, T., Zeng, G.H.: Practical analysis of continuous-variable quantum key distribution using a nondeterministic noiseless linear amplifier. Int. J. Theor. Phys. 57, 10 (2018)

    Article  MATH  Google Scholar 

  26. Ghalaii, M., Ottaviani, C., Kumar, R., Pirandola, S., Razavi, M.: Discrete-modulation continuous-variable quantum key distribution enhanced by quantum scissors. IEEE J. Sel. Area. Comm. 38, 3 (2020)

    Article  Google Scholar 

  27. Ghalaii, M., Ottaviani, C., Kumar, R., Pirandola, S., Razavi, M.: Long-distance continuous-variable quantum key distribution with quantum scissors. IEEE J. Sel. Top. Quant. 26, 3 (2020)

    Article  Google Scholar 

  28. Winnel, M., Hosseinidehaj, N., Ralph, T.C.: Generalised quantum scissors for noiseless linear amplification, arxiv: 2002.12566v1 (2020)

  29. Seshadreesan, K.P., Krovi, H., Guha, S.: Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors. Phys. Rev. A 100, 022315 (2019)

    Article  ADS  Google Scholar 

  30. Seshadreesan, K.P., Krovi, H., Guha, S.: A continuous-variable quantum repeater based on quantum scissors and mode multiplexing, arxiv: 1811.12393v3 (2020)

  31. Ruan, X.C., Zhang, H., Zhao, W., Wang, X.X., Li, X., Guo, Y.: Security analysis of discrete-modulated continuous-variable quantum key distribution over seawater channel. Appl. Sci.-Basel 9, 4956 (2019)

    Article  Google Scholar 

  32. Ma, H.X., Huang, P., Bai, D.Y., Wang, T., Wang, S.Y., Bao, W.S.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 99, 022322 (2019)

    Article  ADS  Google Scholar 

  33. Li, Z.Y., Zhang, Y.C., Xu, F.H., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301 (2014)

    Article  ADS  Google Scholar 

  34. Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  35. Zhang, Y.C., Li, Z.Y., Weedbrook, C., Marshall, K., Pirandola, S., Yu, S., Guo, H.: Noiseless linear amplifiers in entanglement-based continuous-variable quantum key distribution. Entropy 17, 4547 (2015)

    Article  ADS  Google Scholar 

  36. Ma, H.X., Huang, P., Wang, T., Wang, S.Y., Bao, W.S., Zeng, G.H.: Security of continuous-variable measurement-device-independent quantum key distribution with imperfect state preparation. Phys. Lett. A 383, 126005 (2019)

    Article  MathSciNet  Google Scholar 

  37. Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Tualle-Brouri, R., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 11, 045023 (2009)

    Article  ADS  Google Scholar 

  38. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long distance continuous-variable quantum key distribution with a gaussian modulation. Phys. Rev. A 84, 062317 (2011)

    Article  ADS  Google Scholar 

  39. Leverrier, A., Grangier, P.: Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 83, 042312 (2011)

    Article  ADS  Google Scholar 

  40. Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: Lvovsky, A. (ed.) Proceedings of the Ninth International Conference on Quantum Communication, Measurement and Computing, Calgary, 2008, AIP Conf. Proc. No. 1110, p 155. AIP, Melville (2009)

  41. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61871407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinchao Ruan or Wei Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Expressions of the Parameter in the Covariance Matrix \({\varGamma }_{A_{1} B_{1}^{\prime }}\)

Appendix: The Expressions of the Parameter in the Covariance Matrix \({\varGamma }_{A_{1} B_{1}^{\prime }}\)

From [26], we can know that the expressions of the parameter in the covariance matrix \({\varGamma }_{A_{1} B_{1}^{\prime }}\) are as follows

$$ \begin{array}{@{}rcl@{}} V_{X}^{\prime} &=&1+\frac{\alpha^{2}}{{\varsigma}} \left\{ \delta_{1} [-A\sinh \left( \frac{T\alpha^{2}}{2F+1}\right)+B\cosh \left( \frac{T\alpha^{2}}{2F+1}\right) \right.\\ &&\left.+C\sinh \left( \frac{T\alpha^{2}}{2F}\right)\right] + \delta_{2} \left[ A\cosh \left( \frac{T\alpha^{2}}{2F+1}\right)-B\sinh \left( \frac{T\alpha^{2}}{2F+1}\right) \right. \\ &&\left.-C\cosh \left( \frac{T\alpha^{2}}{2F}\right)\right] + \delta_{3} \left[ -A\sin \left( \frac{T\alpha^{2}}{2F+1}\right)+B\cos \left( \frac{T\alpha^{2}}{2F+1}\right) \right.\\ &&\left.\left.+C\sin \left( \frac{T\alpha^{2}}{2F}\right) \right]\right/2 - \delta_{4} [ A\cos \left( \frac{T\alpha^{2}}{2F+1}\right)+B\sin \left( \frac{T\alpha^{2}}{2F+1}\right) \\ &&\left.\left.\left.-C\cos \left( \frac{T\alpha^{2}}{2F}\right)\right]\right/2 \right\}, \end{array} $$
(20)
$$ V_{Y}^{\prime}=\frac{1}{{\varsigma}} \left( b_{k} e^{-\frac{T|\alpha_{k}|^{2}}{2F+1}} -\frac{2(1-\mu)}{F}e^{-\frac{T|\alpha_{k}|^{2}}{2F}} \right) -1, $$
(21)
$$ \begin{array}{@{}rcl@{}} V_{XY}^{\prime} &=& \sqrt{T} Z_{4}^{QS} \\ &=&\frac{4\alpha^{2} \sqrt{\mu(1-\mu)T}}{\mathcal{P}_{\text{succ}}(2F+1)^{2}} \left\{\omega_{1} \cosh\left( \frac{T\alpha^{2}}{2F+1}\right)-\omega_{2} \sinh\left( \frac{T\alpha^{2}}{2F+1}\right) \right.\\ &&\left.+\omega_{3} \cos\left( \frac{T\alpha^{2}}{2F+1}\right) -\omega_{4} \sin\left( \frac{T\alpha^{2}}{2F+1} \right) \right\} , \end{array} $$
(22)

where

$$ \begin{array}{@{}rcl@{}} {\varsigma}&=&\frac{2e^{\frac{-T\alpha_{k} \alpha_{l}^{*} }{2F+1}}}{(2F+1)^{3}} \left( (2F+1)^{2}-\mu(2F+1)+\mu T \alpha_{k} \alpha_{l}^{*} \right) \\ &&-\frac{1-\mu}{2F} e^{\frac{-T\alpha_{k} \alpha_{l}^{*} }{2F}} ,\\ A&=&\frac{2}{(2F+1)^{3}} \left( (2F+1)^{2}-\mu(2F+1)\right),\\ B&=&\frac{2\mu T \alpha^{2}}{(2F+1)^{3}}, C=\frac{1-\mu}{2F}, F=\frac{1}{2}+\frac{1}{4} T \epsilon^{\prime} ,\\ \delta_{1}&=&\frac{\lambda_{0}}{\lambda_{1}}+\frac{\lambda_{2}}{\lambda_{3}}, \delta_{2}=\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{3}}{\lambda_{0}} , \\ \delta_{3}&=&\frac{\lambda_{0}}{\lambda_{1}}-\frac{\lambda_{2}}{\lambda_{3}}, \delta_{4}=\frac{\lambda_{1}}{\lambda_{2}}-\frac{\lambda_{3}}{\lambda_{0}} , \\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} b_{k}&=&\frac{8}{(2F+1)^{3}}\left( (2F+1)^{2}-\mu(2F^{2}+3F+1)+\mu T |\alpha_{k}|^{2} \right), \\ \omega_{1}&=&\sqrt{\frac{\lambda_{0}}{\lambda_{1}}}+\sqrt{\frac{\lambda_{2}}{\lambda_{3}}} , \omega_{2}=\sqrt{\frac{\lambda_{1}}{\lambda_{2}}}+\sqrt{\frac{\lambda_{3}}{\lambda_{0}}} ,\\ \omega_{3}&=&\sqrt{\frac{\lambda_{0}}{\lambda_{1}}}-\sqrt{\frac{\lambda_{2}}{\lambda_{3}}} , \omega_{4}=\sqrt{\frac{\lambda_{1}}{\lambda_{2}}}-\sqrt{\frac{\lambda_{3}}{\lambda_{0}}} . \end{array} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Guo, Y., Ruan, X. et al. Improving the Discrete-Modulated Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with Quantum Scissors. Int J Theor Phys 60, 1949–1962 (2021). https://doi.org/10.1007/s10773-021-04813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04813-0

Keywords

Navigation