Skip to main content
Log in

Thermomechanical Modeling of the Formation of Multi-Сhamber Intrusions for Identifying the Relationship of Plutonic Metamorphism with Gabbro-Diorite Massifs of Western Sangilen, Tuva, Russia

  • Published:
Geotectonics Aims and scope

Abstract

For the first time, a thermomechanical model of a system of multilevel magma chambers above a mantle heat source has been developed to explain the formation mechanisms of intrusive complexes and metamorphic aureoles in Western Sangilen. A model of “thermal blur” at the collision stage and a model of a local magma reservoir at the transtension stage are proposed. The magmatic process was studied using a numerical thermomechanical model of the system magma reservoir–magma transport–formation of intermediate chambers–formation of metamorphic zonal complexes around intrusions at different depth levels. Modeling explains the mosaic distribution of granulite metamorphism zones in the Sangilen block. Model estimates of the duration of intrusive processes were obtained. The change in tectonic regimes in the evolution of Western Sangilen affects the depth of emplacement of gabbro–monzodiorite massifs and surrounding metamorphic aureoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. Ya. Azimov, I. K. Kozakov, and V. A. Glebovitsky, “Early Paleozoic UHT/LP metamorphism in the Sangilen block of the Tuvino-Mongolian massif,” Dokl. Earth Sci. 479, 295–299 (2018).

    Article  Google Scholar 

  2. A. V. Babichev, O. P. Polyansky, S. N. Korobeynikov, and V. V. Reverdatto, “Mathematical modeling of magma fracturing and dike formation,” Dokl. Earth Sci. 458, 1298–1301 (2014).

    Article  Google Scholar 

  3. G. N. Burmakina and A. A. Tsygankov, “Mafic microgranular enclaves in Late Paleozoic granitoids in the Burgasy quartz syenite massif, western Transbaikalia: Composition and petrogenesis,” Petrology 21, 280–303 (2013).

    Article  Google Scholar 

  4. A. N. Vasilevskii, M. A. Boldyrev, V. V. Mikheev, A. A. Dergachev, V. V. Krasavin, Yu. M. Kirin, Yu. N. Fomin, A. G. Filina, T. Ya. Blagovidova, and O. A. Kuchai, Scientific-and-Technical Report of the Altai-Sayan Experimental-and-Methodical Seismological Expedition (Inst. Geol Geofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  5. V. G. Vladimirov, A. G. Vladimirov, A. S. Gibsher, A. S. Gibsher, A. V. Travin, S. N. Rudnev, I. V. Shemelina, N. V. Barabash, and Ya. V. Savinykh, “Model of the tectonometamorphic evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a reflection of the Early Caledonian accretion–collision tectogenesis,” Dokl. Earth Sci. 405, 1159–1165 (2005).

    Google Scholar 

  6. A. S. Gibsher, A. A. Gibsher, V. G. Mal’kovets, R. A. Shelepaev, A. A. Terleev, V. P. Sukhorukov, and S. N. Rudnev, “Nature and age of high-pressure (kyanite) metamorphism of the western Sangilen (Southeast Tuva),” Proceedings of the Conference “Geodynamic Settings and Thermodynamic Conditions of Regional Metamorphism in the Phanerozoic,” St. Petersburg, Russia, 2017 (Sprinter, St. Petersburg, 2017), pp. 52–53.

  7. A. A. Gibsher, V. G. Malkovets, A. V. Travin, E. A. Belousova, V. V. Sharygin, and Z. Konc, “The age of camptonite dikes of the Agardag alkali-basalt complex (western Sangilen): Results of Ar/Ar and U/Pb dating,” Russ. Geol. Geophys. 53, 763–775 (2012).

    Article  Google Scholar 

  8. A. E. Izokh, S. A. Kargopolov, R. A. Shelepaev, A. V. Travin, and V. V. Egorova, “Basite magmatism of the Cambrian–Ordovician stage of the Altai-Sayan fold zone evolution, and its relationship to the high temperature/low pressure metamorphism,” Proceedings of the Conference “Topical Problems of Geology and Minerageny of Southern Siberia,” Elan’ sett., Kemerovo Obl., Russia, 2001 (Inst. Gidrodin. im. M. A. Lavrent’eva Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001), pp. 68–72.

  9. S. A. Kargopolov, “Metamorphism of the Mugur zonal complex (Southeast Tuva),” Geol. Geofiz. 32 (3), 109–119 (1991).

    Google Scholar 

  10. S. A. Kargopolov, Candidate’s Dissertation in Geology and Mineralogy (Novosibirsk, 1997).

  11. I. V. Karmysheva, V. G. Vladimirov, and A. G. Vladimirov, “Synkinematic granitoid magmatism of Western Sangilen, South-East Tuva,” Petrology 25, 87–113 (2017).

    Article  Google Scholar 

  12. I. V. Karmysheva, V. G. Vladimirov, R. A. Shelepaev, S. N. Rudnev, V. A. Yakovlev, and D. V. Semenova, “Bayan-Kol gabbro-granite association: Composition, ages, tectonic and geodynamic settings (western Sangilen, Southeast Tuva),” Geol. Geofiz. 60, 916–933 (2019).

    Google Scholar 

  13. I. K. Kozakov, E. B. Sal’nikova, E. V. Bibikova, T. I. Kirnozova, A. B. Kotov, and V. P. Kovach, “ Polychronous evolution of the Paleozoic granitoid magmatism in the Tuva–Mongolia Massif: U–Pb geochronological data,” Petrology 7, 592–601 (1999).

    Google Scholar 

  14. I. K. Kozakov, A. B. Kotov, E. B. Sal’nikova, V. P. Kovach, A. Natman, E. V. Bibikova, T. I. Kirnozova, W. Todt, A. Kröner, S. Z. Yakovleva, V. I. Lebedev, and A. M. Sugorakova, “Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif,” Geotectonics 35, 165–184 (2001).

    Google Scholar 

  15. I. K. Kozakov and P. Ya. Azimov, “Geodynamics of the origin of granulites in the Sangilen block of the Tuva–Mongolian terrane, Central Asian Orogenic Belt,” Petrology 25, 635–645 (2017).

    Article  Google Scholar 

  16. O. P. Polyansky, S. N. Korobeynikov, A. V. Babichev, and V. V. Reverdatto, “Formation and upwelling of mantle diapirs through the cratonic lithosphere: Numerical thermomechanical modeling,” Petrology 20, 120–137 (2012).

    Article  Google Scholar 

  17. O. P. Polyanskii, S. A. Kargopolov, A. E. Izokh, A. N. Semenov, A. V. Babichev, and A. N. Vasilevskii, “Role of magmatic heat sources when formation of regional and contact metamorphic areals of western Sangilen (Tuva),” Geodin. Tektonofiz. 10, 309–323 (2019).

    Article  Google Scholar 

  18. O. P. Polyanskii, A. N. Semenov, V. G. Vladimirov, I. V. Karmysheva, A. G. Vladimirov, and V. A. Yakovlev, “A numerical model of magmatic mingling: Case study of the Bayan-Kol gabbro-granite series (Sangilen, Tuva),” Geodin. Tektonofiz. 8, 385–403 (2017).

    Article  Google Scholar 

  19. A. Yu. Petrova, Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2001).

  20. A. Yu. Petrova and Yu. A. Kostitsyn, “Age of high-gradient metamorphism and granite magmatism in the Western Sangilen,” Geochem. Int. 35, 295–298 (1997).

    Google Scholar 

  21. S. N. Rudnev, Early Paleozoic Granitoid Magmatism of the Altai–Sayan Fold Zone and the Lake Zone in Western Mongolia (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  22. A. Yu. Selyatitskii, O. P. Polyanskii, R. A. Shelepaev, “Deep metamorphic dispersion areola of the Bayan-Kol gabbro-monzodiorite massif as an indicator if lower crustal basite chambers (Western Sangilen, Southeast Tuva),” Geol. Geofiz. (2020). https://doi.org/10.15372/GiG2020183

  23. A. N. Semenov and O. P. Polyansky, “Numerical modeling of the mechanisms of magma mingling and mixing: A case study of the formation of complex intrusions,” Russ. Geol. Geophys. 58, 1317–1332 (2017).

    Article  Google Scholar 

  24. V. S. Fedorovskii, E. V. Khain, A. G. Vladimirov, S. A. Kargopolov, A. S. Gibsher, and A. E. Izokh, “Tectonics, metamorphism, and magmatism of collisional zones of the Central Asian Caledonides,” Geotectonics 29, 193–212 (1995).

    Google Scholar 

  25. R. A. Shelepaev, V. V. Egorova, A. E. Izokh, and R. Seltmann, “Collisional mafic magmatism of the fold-thrust belts framing southern Siberia (Western Sangilen, southeastern Tuva),” Russ. Geol. Geophys. 59, 525–540 (2018).

    Article  Google Scholar 

  26. ANSYS Fluent Theory Guide, Release 12.1, 2009. https://www.ansys.com/products/fluids/ansys-fluent. Accessed May 18, 2020.

  27. L. Y. Aranovich and K. K. Podlesskii, “The cordierite-garnet-sillimanite-quartz equilibrium: Experiments and applications,” in Kinetics and Equilibrium in Mineral Reactions, Ed. by S. K. Saxena, (Springer, New York, 1983), pp. 173–198.

    Google Scholar 

  28. A. A. Ariskin, M. Yr. Frenkel, G. S. Barmina and R. L. Nielsen, “Comagmat: A Fortran program to model magma differentiation processes,” Comput. Geosci. 19, 1155–1170 (1993).

    Article  Google Scholar 

  29. P. D. Asimow and M. S. Ghiorso, “Algorithmic modifications extending MELTS to calculate subsolidus phase relations,” Am. Mineral. 83, 1127–1132 (1998).

    Article  Google Scholar 

  30. F. Bea, “The sources of energy for crustal melting and the geochemistry of heat-producing elements,” Lithos 153, 278–291 (2012).

    Article  Google Scholar 

  31. D. Bittner and H. Schmeling, “Numerical modelling of melting processes and induced diapirism in the lower crust,” Geophys. J. Int. 123, 59–70 (1995).

    Article  Google Scholar 

  32. J. D. Clemens, “Melting of the continental crust: Fluid regimes, melting reactions, and source-rock fertility,” in Evolution and Differentiation of the Continental Crust, Ed. by M. Brown and T. Rushmer (Cambridge Univ. Press, Cambridge, 2006), pp. 297–331.

    Google Scholar 

  33. A. R. Cruden and R. F. Weinberg, “Mechanisms of magma transport and storage in the lower and middle crust–magma segregation, ascent and emplacement,” in Volcanic and Igneous Plumbing Systems. Understanding Magma Transport, Storage, Evolution in the Earth’s Crust, Ed. by S. Burchardt (Elsevier, New York, 2018), pp. 13–53.

    Google Scholar 

  34. G. T. R. Droop and K. H. Brodie, “Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: The roles of fluid-present and fluid-absent melting,” J. Metamorph. Geol. 30, 843–864 (2012).

    Article  Google Scholar 

  35. V. V. Egorova, N. I. Volkova, R. A. Shelepaev, and A. E. Izokh, “The lithosphere beneath the Sangilen Plateau, Siberia: Evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts,” Mineral. Petrol. 88, 419–441 (2006).

    Article  Google Scholar 

  36. M. Ghaffari, N. Rashidnejad-Omran, R. Dabiri, J. F. Santos, J. Mata, D. Buchs, I. McDonald, P. Appel, and D. Garbe-Schönberg, “Interaction between felsic and mafic magmas in the Salmas intrusive complex, Northwestern Iran: Constraints from petrography and geochemistry,” J. Asian Earth Sci. 111, 440–458 (2015).

    Article  Google Scholar 

  37. A. Guy, N. Holzrichter, and J. Ebbing, “Moho depth model for the Central Asian Orogenic Belt from satellite gravity gradients,” J. Geophys. Res.: Solid Earth 122, 7388–7407 (2017).

    Article  Google Scholar 

  38. J. M. Hammarstrom and E. Zen, “Aluminum in hornblende: An empirical igneous geobarometer,” Am. Mineral. 71, 1297–1313 (1986).

    Google Scholar 

  39. S. L. Harley, “Ultrahigh temperature granulite metamorphism (1050°C, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica,” J. Metamorph. Geol. 16, 541–562 (1998).

    Article  Google Scholar 

  40. L. S. Hollister, G. C. Grissom, E. K. Peters, H. H. Stowell, and V. B. Sisson, “Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons,” Am. Mineral. 72, 231–239 (1987).

    Google Scholar 

  41. S.-I. Karato, M. S. Paterson, and J. D. Fitzgerald, “Rheology of synthetic olivine aggregates: Influence of grain size and water,” J. Geophys. Res., [Solid Earth Planets] 91, 8151–8176 (1986).

  42. T. Keller, D. A. May, and B. J. P. Kaus, “Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust,” Geophys. J. Int. 195, 1406–1442 (2013).

    Article  Google Scholar 

  43. A. K. Kronenberg and J. Tullis, “Flow strength of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening,” J. Geophys. Res., B 89, 4281–4297 (1984).

  44. P. W. Lipman and O. Bachmann, “Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data,” Geosphere 11, 705–743 (2015).

    Article  Google Scholar 

  45. B. A. Litvinovsky, A. N. Zanvilevich, S. M. Wickham, B. M. Jahn, Y. Vapnik, S. V. Kanakin, and N. S. Karmanov, “Composite dikes in four successive granitoid suites from Transbaikalia, Russia: The effect of silicic and mafic magma interaction on the chemical features of granitoids,” J. Asian Earth Sci. 136, 16–39 (2017).

    Article  Google Scholar 

  46. B. D. Marsh, “On the mechanics of igneous diapirism, stoping, and zone melting,” Am. J. Sci. 282, 808–855 (1982).

    Article  Google Scholar 

  47. S. Mei, W. Bai, T. Hiraga, and D. L. Kohlstedt, “Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions,” Earth Planet. Sci. Lett. 201, 491–507 (2002).

    Article  Google Scholar 

  48. R. Nair and T. Chacko, “Fluid-absent melting of high-grade semi-pelites: P–T constraints on orthopyroxene formation and implications for granulite genesis,” J. Petrol. 43, 2121–2142 (2002).

    Article  Google Scholar 

  49. P. Nimis, “Clinopyroxene geobarometry of magmatic rocks. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems,” Contrib. Mineral. Petrol. 135, 62–74 (2002).

    Article  Google Scholar 

  50. R. Powell, T. Holland, and B. Worley, “Calculating phase diagrams involving solid solutions via nonlinear equations, with examples using Thermocalc,” J. Metamorph. Geol. 16, 577–588 (1998).

    Article  Google Scholar 

  51. V. V. Reverdatto, I. I. Likhanov, O. P. Polyansky, V. S. Sheplev, and V. Y. Kolobov, The Nature and Models of Metamorphism (Springer, Cham, Switzerland, 2019).

    Book  Google Scholar 

  52. N. Riel, J. Mercier, and R. F. Weinberg, “Convection in a partially molten metasedimentary crust: Insights from the El Oro Complex (Ecuador),” Geology 44, 31–34 (2016).

    Article  Google Scholar 

  53. C. L. Rosenberg and M. R. Handy, “Experimental deformation of partially melted granite revisited: Implications for the continental crust,” J. Metamorph. Geol. 23, 19–28 (2005).

    Article  Google Scholar 

  54. E. W. Sawyer, “Melt segregation in the continental crust: Distribution and movement of melt in anatectic rocks,” J. Metamorph. Geol. 19, 291–309 (2001).

    Article  Google Scholar 

  55. H. Schmeling, G. Marquart, R. Weinberg, and H. Wallner, “Modelling melting and melt segregation by two-phase flow: New insights into the dynamics of magmatic systems in the continental crust,” Geophys. J. Int. 217, 422–450 (2019).

    Article  Google Scholar 

  56. M. W. Schmidt, “Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer,” Contrib. Mineral. Petrol. 110, 304–310 (1992).

    Article  Google Scholar 

  57. B. Schoene, U. Schaltegger, P. Brack, Ch. Latkoczy, A. Stracke, and D. Gunther, “Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy,” Earth Planet. Sci. Lett. 355–356, 162–173 (2012).

    Article  Google Scholar 

  58. M. Tirone, “Petrological geodynamics of mantle melting II. AlphaMELTS + Multiphase flow: Dynamic fractional melting,” Front. Earth Sci. 6, Art. No. 18 (2018).

    Article  Google Scholar 

  59. P. Tropper, S. Wyhlidal, U. A. Haefeker, and P. W. Mirwald, “An experimental investigation of Na incorporation in cordierite in low P/high T metapelites,” Mineral. Petrol. 112, 199–217 (2018).

    Article  Google Scholar 

  60. A. B. Thompson, “Mineral reaction in pelitic rocks: II. Calculation of some P–T–X (Fe–Mg) face relations,” Am. J. Sci. 276, 425–454 (1976).

    Article  Google Scholar 

  61. Thermocalc software. https://hpxeosandthermocalc.org. Accessed January 12, 2019.

Download references

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for useful comment. The authors are grateful to Dr. A.A. Shchipansky (Geological Institute, Russian Academy of Sciences, Moscow) for his attention to our research. We also thank PhD A.V. Babichev, PhD S.V. Zinov’ev, and S.A. Kargopolov (all at the Sobolev Institute of Geology and Mineralogy, Siberian Branch, the Russian Academy of Sciences, Novosibirsk) for their participation in field works, and M.N. Shoupletsova, editor of the journal Geotectonics, for her attentive handling our paper and editing.

Funding

The work was carried out under a state contract for the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, and was supported by the Russian Foundation for Basic Research (project no. 17-05-00848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Polyansky.

Additional information

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyansky, O.P., Izokh, A.E., Semenov, A.N. et al. Thermomechanical Modeling of the Formation of Multi-Сhamber Intrusions for Identifying the Relationship of Plutonic Metamorphism with Gabbro-Diorite Massifs of Western Sangilen, Tuva, Russia. Geotecton. 55, 1–19 (2021). https://doi.org/10.1134/S001685212101009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001685212101009X

Keywords:

Navigation