Skip to main content
Log in

Inverted Barrovian Metamorphic Zones in the Poly-Deformed Domains of the Western Wadi Allaqi Shear Zone (South Eastern Desert, Egypt): Geochemical and Structural Constraints

  • Published:
Geotectonics Aims and scope

Abstract

Poly-deformed late-Proterozoic metamorphic domains covering Um Ashira area at the western segment of Wadi Allaqi shear zone, South Eastern Desert of Egypt, show evidences of inverted Barrovian metamorphism. They exhibit four metamorphic zonal patterns, arranging progressively from chlorite, biotite, garnet, to sillimanite zones. The higher grade metamorphic domains appear at higher structural levels with general dipping toward the North East. Four deformational phases (D1–D4), associating with major planar structures (S1–S4), and four mesoscopic and microscopic folds are recognized. The pervasive fabric, growth of metamorphic minerals and peak metamorphism were linked to D2 deformation phase. Structural, petrographic, microchemical, and thermobarometric data along South-North profile show possibility of inverted Barrovian metamorphic pattern with an increase in the metamorphic grade toward the North. The established structural sequence and tectonic modeling suggest that the apparent inversion coexists due to the main F2 folding phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. M. Abdeen and A. A. Abdelghaffar, “Syn- and post-accretionary structures in the Neoproterozoic Central Allaqi-Heiani suture zone, Southeastern Egypt,” Precambrian Res. 185, 95‒108 (2011).

    Article  Google Scholar 

  2. M. G. Abdelsalam and R. J. Stern, “Sutures and shear zones in the Arabian‒Nubian Shield,” J. Afr. Earth Sci. 23, 289–310 (1996).

    Article  Google Scholar 

  3. M. L. Abdel Khalek, M. A. Takla, A. Sehim, Z. Hamimi, and A. W. El Manawi, “Geology and tectonic evolution of Wadi Beitan area, south eastern desert, Egypt,” Proceedings of the 1st International Conference on Geology of the Arab World, Cairo, Egypt, 1992 (Cairo Univ., 1992), Vol, 1, pp. 369–394.

  4. P. G. Andreasson and B. Lagerblad, “Occurrence and significance of inverted metamorphic gradients in the western Scandinavian Caledonides,” J. Geol. Soc. (London, U. K.) 137, 219–230 (1980).

    Article  Google Scholar 

  5. J. W. Ambrose, “Progressive kinetic metamorphism in the Missi series near Flinflon, Manitoba,” Am. J. Sci. 32, 257‒286 (1936).

    Article  Google Scholar 

  6. R. Arenas, F. J. R. Pascual, F. D. Garcia, and J. R. M. Catalan, “High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): Evidence of subduction and syncollisional decompression,” J. Metamorph. Geol. 13, 141–164 (1995).

    Article  Google Scholar 

  7. M. P. Atherton, “The garnet isograd in pelitic rocks and its relation to metamorphic facies,” Am. Mineral. 49, 1331–1349 (1964).

    Google Scholar 

  8. M. P. Atherton, “The metamorphism of the Dalradian rocks of Scotland,” Scott. J. Geol. 13, 331–370 (1977).

    Article  Google Scholar 

  9. J. Blundy and T. J. B. Holland, “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer,” Contrib. Mineral. Petrol. 104, 208–224 (1990).

    Article  Google Scholar 

  10. W. L. Brown, “Peristerite unmixing in the plagioclases and metamorphic facies series,” Nor. Geol. Tidsskr. 42, 354‒382 (1962).

    Google Scholar 

  11. E. H. Brown, “Some zoned garnets from the green schist facies,” Am. Mineral. 54, 1662‒1677 (1969).

    Google Scholar 

  12. P. Burg, A. Leyreloup, J. Marchand, and P. Matte, “Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt; an example in the French Massif Central,” in Variscan Tectonics of the North Atlantic Region, Vol. 14 of Geol. Soc. London, Spec. Publ., Ed. by D. H. W. Hutton and D. J. Sanderson (London, 1984), pp. 47–61.

  13. B. C. M. Butler, “Chemical study of minerals from the Moine schists of the Ardnamurchen area, Argyllshire, Scotland,” J. Petrol. 8, 233‒267 (1967).

    Article  Google Scholar 

  14. G. A. Chinner, “Pelitic gneisses with varying ferrous/ ferric ratios from Glen Clova, Angus, Scotland,” J. Petrol. 1, 178–217 (1960).

    Article  Google Scholar 

  15. G. A. Chinner, “The significance of aluminium silicates in metamorphism,” Earth Sci. Rev. 2, 111‒126 (1966).

    Article  Google Scholar 

  16. S. Dasgupta, S. Ganguly, and S. Neogi, “Inverted metamorphic sequence in the Sikkim Himalayas: Crystallization history, PT gradient and implications,” J. Metamorph. Geol. 22, 395–412 (2004).

    Article  Google Scholar 

  17. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to Rock Forming Minerals, in 5 vols. (Longmans, London, 1969).

  18. A. S. El-Fakharani, MS Thesis (Aswan, Egypt, 1997).

  19. Y. A. El Kazzaz, “Structural history of Dif Anfib area South Eastern Desert, Egypt,” Egypt. J. Geol. 45, 741‒756 (2001).

    Google Scholar 

  20. P. C. England and P. Molnar, “The interpretation of inverted metamorphic isograds using simple physical calculations,” Tectonics 12, 145‒157 (1993).

    Article  Google Scholar 

  21. P. C. England and A. B. Thompson, “Pressure—Temperature—Time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust,” J. Petrol. 25, 894–928 (1984).

    Article  Google Scholar 

  22. S. M. A. Fawzy, “Significance of small-scale structures illustrated by the metasedimentary domains at Wadi Allaqi, S.E.D., Egypt,” Proc. Egypt. Acad. Sci. 47, 47‒58 (1997).

    Google Scholar 

  23. J. M. Ferry and F. S. Spear, “Experimental calibration of the partitioning of Fe and Mg between biotite and garnet,” Contrib. Mineral. Petrol. 66, 113–117 (1978).

    Article  Google Scholar 

  24. M. J. Fleuty, “The description of folds,” Proc. Geol. Assoc. 75, 461‒492 (1964).

    Article  Google Scholar 

  25. M. D. Foster, “Correlation of dioctahedral potassium micas on the basis of their charge relations,” U.S. Geol. Surv. Bull., No. 1036-D, 57‒67 (1956).

    Google Scholar 

  26. H. D. Gibson, R. L. Brown, and R. R. Parrish, “Deformation induced inverted metamorphic field gradients: An example from the southeastern Canadian Cordillera,” J. Struct. Geol. 21, 751–767 (1999).

    Article  Google Scholar 

  27. J. R. Goldsmith, “Plagioclase stability at elevated temperatures and water pressures,” Am. Mineral. 67, 652‒675 (1982).

    Google Scholar 

  28. C. M. Graham, K. M. Greig, M. F. Sheppard, and B. Turi, “Genesis and mobility of the H2O–CO2 fluid phase during regional green schist and epidote amphibolite facies metamorphism, a petrological and stable isotope study in the Scottish Dalradian,” J. Geol. Soc. (London, U. K.) 140, 577– 599 (1983).

    Article  Google Scholar 

  29. J. A. Grant and P. W. Weiblen, “Retrograde zoning in garnet near the second sillimanite isograd,” Am. J. Sci. 270, 281‒296 (1971).

    Article  Google Scholar 

  30. R. O. Greiling, M. M. Abdeen, A. A. Dardir, H. El Akhal, M. El Ramly, G. M. Kamal El Din, A. F. Osman, A. A. Rashwan, A. H. N. Rice, and M. F. Sadek, “A structural synthesis of the Proterozoic Arabian–Nubian Shield in Egypt,” Geol. Rundsch. 83, 484–501 (1994).

    Article  Google Scholar 

  31. C. V. Guidotti, “Micas in metamorphic rocks,” in Micas, Vol. 13 of Rev. Mineral., Ed. by S. W. Bailey (Mineral. Soc. Am., Washington, DC, 1984), pp. 357–468.

  32. J. M. Hammarstorm and E. A. Zen, “Aluminum in hornblende: An empirical igneous geobarometer,” Am. Mineral. 71, 1297–1313 (1986).

    Google Scholar 

  33. D. J. Henry, C. V. Guidotti, and J. A. Thomson, “The Ti-saturation surface for low-to medium pressure metapelitic biotite: Implications for geothermometry and Ti-substitution mechanisms” Am. Mineral. 90, 316–328 (2005).

    Article  Google Scholar 

  34. M. H. Hey, “A new review of the chlorites,” Mineral. Mag. J. Mineral. Soc. 30, 277–292 (1954).

    Article  Google Scholar 

  35. G. R. Himmelberg, D. A. Brew, and A. B. Ford, “Development of inverted metamorphic isograds in the western metamorphic belt, Juneau, Alaska,” J. Metamorph. Geol. 9, 165–180 (1991).

    Article  Google Scholar 

  36. L. S. Hollister, “Garnet zoning: An interpretation based on the Rayleigh fractionation model,” Science 154, 1647‒1651 (1966).

    Article  Google Scholar 

  37. A. M. Hopgood, “Polyphase analysis of gneisses and migmatites,” Trans. R. Soc. Edinburgh: Earth Sci. 71, 55‒68 (1980).

    Article  Google Scholar 

  38. A. M. Hopgood and D. R. Bowes, “Application of structural sequence to correlation of Precambrian finesses, Outer Hebrides, Scotland,” Geol. Soc. Am. Bull. 83, 107–128 (1972).

    Article  Google Scholar 

  39. A. M. Hopgood and D. R. Bowes, “Contrasting structural features in the granulite-gneiss-charnmkite complex, Lake Baikal, U.S.S.R.: Evidence of diverse geotectonic regimes in early Proterozoic times,” Tectonophysics 174, 279‒299 (1990).

    Article  Google Scholar 

  40. T. Hoy, “Calc-silicate isograds in the Riondel area, southeastern British Columbia,” Can. J. Earth Sci. 13, 1093‒1104 (1976).

    Article  Google Scholar 

  41. E. C. Jowett, “Fitting iron and magnesium into the hydrothermal chlorite geothermometer,” Program Abstracts, GAC/MAC/SEG Joint Annual Meeting, Toronto, Canada, 1991 (1991), Vol. 16, Abstr. No. A62.

  42. E. Klitzsch and A. Lejal-Nicol, “Flora and fauna from strata in southern Egypt and northern Sudan,” Berl. Geowiss. Abh., Reihe A 50, 47–79 (1984).

    Google Scholar 

  43. A. Krӧner, R. Greiling, T. Reiscmann, I. M. Hussein, R. J. Stern, J. Kruiger, S. Dürr, and M. Zimmer, “Pan-African crustal evolution in the Nubian segment of Northeast Africa,” in Proterozoic Lithospheric Evolution, Vol. 17 of Am. Geophys. Union, Geodyn. Ser., Ed. by A. Krӧner (1987), pp. 235‒257.

  44. B. E. Leake, “Nomenclature of amphiboles,” Am. Mineral. 63, 1023–1052 (1978).

    Google Scholar 

  45. P. Le Fort, “Metamorphism and magmatism during the Himalayan collision,” in Collision Tectonics, Vol. 19 of Geol. Soc. London, Spec. Publ., Ed. by M. P. Coward and A. C. Ries (1986), pp. 159‒172.

  46. J. G. Liou, “Synthesis and stability relations of epidote, Ca2Al2FeSi3O12 (OH),” J. Petrol. 14, 381‒413 (1973).

    Article  Google Scholar 

  47. H. J. Massonnene and W. Schreyer, “Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz,” Contrib. Mineral. Petrol. 96, 212‒224 (1987).

    Article  Google Scholar 

  48. A. Miyashiro, “The Troodos ophiolitic complex was probably formed in an island arc,” Earth and Planet. Sci. Lett. 19, 218–224 (1973).

    Article  Google Scholar 

  49. N. M. Moghazy, A. Emam, and E. M. Abdel Rahman, “Mineral chemistry and geochemical aspects of Gebel Filat granites, South Eastern Desert, Egypt,” Arab. J. Geosci. 4, 689–702 (2011).

    Article  Google Scholar 

  50. A. M. Noweir, M. A. El Amawy, A. A. Rashwan, and A. M. AbdelAziz, “Geology and structural evolution of the Pan African basement rocks around Wadi Umm Arka, Northeast Wadi Allaqi, South Eastern Desert. Egypt,” Egypt. J. Geol. 40, 477‒512 (1996).

    Google Scholar 

  51. J. S. Pallister, J. S. Stacy, L. B. Fischer, and W. R. Premo, “Precambrian ophiolites of Arabia: Geological setting, U–Pb geochronology Pb-isotopic characteristics and implications for continental accretion,” Precambrian Res. 38, 60–64 (1989).

    Google Scholar 

  52. P. Raase, “A1 and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism,” Contrib. Mineral. Petrol. 45, 231‒216 (1974).

    Article  Google Scholar 

  53. J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic, New York, 1983).

  54. A. A. Rashwan, “Polyphase metamorphism and structural events of the late Proterozoic metapelites of Rod El Bil, Allaqi terrain, South Eastern Desert, Egypt,” Egypt. J. Geol. 43, 311‒323 (1999).

    Google Scholar 

  55. L. H. Royden, “The steady state thermal structure of eroding orogenic belt and accretionary prisms,” J. Geophys. Res.: Solid Earth 98, 4487‒4507 (1993).

    Article  Google Scholar 

  56. C. Ruppel and K. V. Hodges, “Pressure‒Temperature‒Time paths from two-dimensional thermal models: Prograde, retrograde, and inverted metamorphism,” Tectonics 13, 17‒44 (1994).

    Article  Google Scholar 

  57. M. W. Schmidt, “Amphibole composition as a function of pressure: An experimental calibration of the Al-in-hornblende barometer,” Contrib. Mineral. Petrol. 110, 304–310 (1992).

    Article  Google Scholar 

  58. C. Sivaprakash, “Zoned garnets in some Scottish Dalradian pelites,” Mineral. Mag. 44, 301‒307 (1981).

    Article  Google Scholar 

  59. J. V. Smith and W. L. Brown, Feldspar Minerals, Vol. 1: Crystal Structures, Physical, Chemical and Microtextural Properties (Springer, Berlin, 1988).

  60. R. J. Stern, “Arc Assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the assembly of Gondwana land,” Annu. Rev. Earth Planet. Sci. 22, 319–351 (1994).

    Article  Google Scholar 

  61. R. J. Stern and A. Kröner, “Geochronologic and isotopic constraints on Late Precambrian crustal evolution in NE Sudan,” J. Geol. 101, 555–574 (1993).

    Article  Google Scholar 

  62. P. Štípská and K. Schulmann, “Inverted metamorphic zonation in a basement derived nappe sequence, eastern margin of the Bohemian Massif,” Geol. J. 30, 385–413 (1995).

    Article  Google Scholar 

  63. D. B. Stoeser and V. E. Camp, “Pan African microplate accretion of the Arabian Shield,” Geol. Soc. Am. Bull. 96, 817–826 (1985).

    Article  Google Scholar 

  64. M. A. Takla, T. A. Sayah, Z. Hamimi, S. Mansour, and S. Farag, “Geologic setting and tectonic evolution of Gabal Felat area, South Eastern Desert, Egypt,” Egypt. J. Geol. 38, 455‒474 (1994).

    Google Scholar 

  65. I. D. Tewhey and P. C. Hess, “Silicate immiscibility and thermodynamic mixing properties of liquids in the CaO-SiO2 system,” Phys. Chem. Glasses 20, 41‒53 (1979).

    Google Scholar 

  66. R. J. Tracy, “Compositional zoning and inclusions in metamorphic minerals” Rev. Mineral. 10, 355‒397 (1982).

    Google Scholar 

  67. S. Wallis, “Exhuming the Sanbagawa metamorphic belt: The importance of tectonic discontinuities,” J. Metamorph. Geol. 16, 83–95 (1998).

    Article  Google Scholar 

  68. R. P. Wintschand and M. S. Andrews, “Deformation induced growth of sillimanite (stress). Mineral revisited,” J. Geol. 96, 143–161 (1988).

    Article  Google Scholar 

  69. C. Yakymchuk and L. Godin, “Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: An example from far northwest Nepal,” J. Metamorph. Geol. 30, 513–535 (2012).

    Article  Google Scholar 

  70. B. W. D. Yardley, “The nature and significance of the mechanism of sillimanite growth in the Connemara Schists, Ireland,” Contrib. Mineral. Petrol. 15, 230‒242 (1977).

    Google Scholar 

  71. B. Zoheir, A. Emam, M. El-Amawy, and T. Abu-Alam, “Auriferous shear zones in the central Allaqi-Heiani belt: Orogenic gold in post-accretionary structures, SE Egypt,” J. Afr. Earth Sci. 146, 118‒131 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors highly acknowledge the Geology Department, Faculty of Science, Aswan University (Egypt), for allowing the field facilities and petrographic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Younis.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, A., El Fakharani, A., Abbas, H. et al. Inverted Barrovian Metamorphic Zones in the Poly-Deformed Domains of the Western Wadi Allaqi Shear Zone (South Eastern Desert, Egypt): Geochemical and Structural Constraints. Geotecton. 55, 94–111 (2021). https://doi.org/10.1134/S0016852121010118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121010118

Keywords:

Navigation