Skip to main content
Log in

Fibrinogen Adsorption on the Lipid Surface as a Factor of Regulation of Fibrin Formation

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It was found that the enzymes of the coagulation cascade interact with lipid microparticles or microvesicles of natural or artificial origin that circulate in the blood. Such interactions can modulate hemostasis. Less is known about the consequences of direct interaction of fibrinogen/fibrin with microvesicles. It was shown in this study with purified systems that the presence of lipid particles of various compositions in a solution can specifically affect the kinetics of fibrin polymerization. Experimental data are presented that indicate that these effects are due to the adsorption of fibrinogen on the surface of microvesicles. In particular, it was shown that the adsorption of fibrinogen at a sufficiently high concentration led to an acceleration of thrombin-induced fibrin polymerization due to the local concentrating effect and the inclusion of microvesicles in the clot structure. Thus, the direct interaction of fibrinogen with microvesicles is a significant factor of hemostasis, which should be considered in the analysis of blood clotting disorders and the development of artificial lipid carriers of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. M. Nabiullina, D. A. Faizullin, C. Nagaswami, et al., Blood 124, 2807 (2014).

    Article  Google Scholar 

  2. R. M. Nabiullina, I. G. Mustafin, Y. F. Zuev, et al., Dokl. Biochem. Biophys. 462 (1), 151 (2015).

    Article  Google Scholar 

  3. L. D. Zubairova, R. M. Nabiullina, C. Nagaswami, et al., Sci. Rep. 5, 1 (2015).

    Article  Google Scholar 

  4. M. T. Cunningham, B. A. Citron, and T. A. Koerner, Thrombosis Res. 95, 325 (1999).

    Article  Google Scholar 

  5. B. Varadi, K. Kolev, K. Tenekedjiev, et al., J. Biol. Chem. 279, 39863 (2004).

    Article  Google Scholar 

  6. D. R. Bakirova, D. A. Faizullin, Yu. A. Valiullina, et al., Bull. Exp Biool. Med. 163 (6), 722 (2017).

    Article  Google Scholar 

  7. A. M. Galan, M. R. Hernandez, J. Bozzo, et al., Transfusion 38 (11–12), 1004 (1998).

  8. B. Alving, Transfusion 38 (11–12), 997 (1998).

  9. M. R. Hernandez, P. Urban, E. Casals, et al., Int. J. Nanomed. 7, 2339 (2012).

    Google Scholar 

  10. N. Amabile, C. Guignabert, D. Montani, et al., Eur. Respir. J. 42 (1), 272 (2013).

    Article  Google Scholar 

  11. F. Kunz, W. D. Zwierzina, and H. Hortnagl, Atherosclerosis 49 (2), 195 (1983).

    Article  Google Scholar 

  12. M. F. Matus, C. Vilos, B. A. Cisterna, et al., Vasc. Pharmacol. 101, 1 (2018).

    Article  Google Scholar 

  13. A. S. Jakate, C. M. Einhaus, A. P. DeAnglis et al., Cancer Res. 63 (21), 7314 (2003).

    Google Scholar 

  14. A. Tanka-Salamon, A. Bota, A. Wacha, et al., BioMed Res. Int. 2017, 5130495 (2017).

    Article  Google Scholar 

  15. Y. Hu, C. Wu, C. Zhu, et al., Int. J. Pharm. 552, 319 (2018).

    Article  Google Scholar 

  16. M. Shukla, U. D. Sekhon, V. Betapudi, et al., J. Thromb. Haemost. 15 (2), 375 (2017).

    Article  Google Scholar 

  17. Yu. F. Zuev, R. I. Litvinov, A. E. Sitnitsky, et al., J. Phys. Chem. B 121, 7833 (2017).

    Article  Google Scholar 

  18. T. Ueda, D. Murakami, and M. Tanaka, Front. Chem. 6, 542 (2018).

    Article  ADS  Google Scholar 

  19. K. Sankaranarayanan, Biointerphases 10, 021009 (2015).

    Article  Google Scholar 

  20. B. C. Cook and G. S. Retzinger, J. Colloid Interface Sci. 162 (1), 171 (1994).

    Article  ADS  Google Scholar 

  21. G. S. Retzinger, B. C. Cook, and A. P. DeAnglis, J. Colloid Interface Sci. 168, 514 (1994).

    Article  ADS  Google Scholar 

  22. Z. Adamczyk, J. Barbasz, and M. Cieśla, Langmuir 27, 6868 (2011).

    Article  Google Scholar 

  23. L. Zhang, B. Casey, D. K. Galanakis, et al., Acta Biomater. 54, 164 (2017).

    Article  Google Scholar 

  24. J. W. Weisel and C. Nagaswami, Biophys. J. 63, 111 (1992).

    Article  ADS  Google Scholar 

  25. T. Sugo, H. Endo, M. Matsuda, et al., J. Thromb. Haemost. 4, 1738 (2006).

    Article  Google Scholar 

  26. J. W. Weisel and R. I. Litvinov, Cardiovasc. Hematol. Agents Med. Chem. 6, 161 (2008).

    Article  Google Scholar 

  27. A. I. Greenwood, S. Tristram-Nagle, and J. F. Nagle, Chem. Phys. Lipid. 143 (1–2), 1 (2006).

  28. Y. Okahata and H. Ebato, Anal. Chem. 63, 203 (1991).

    Article  Google Scholar 

  29. S. R. Tabaei, J.-H. Choi, G. H. Zan, et al., Langmuir 30 (34), 10363 (2014).

    Article  Google Scholar 

  30. R. R. Hantgan and J. Hermans, J. Biol. Chem. 254, 11272 (1979).

    Article  Google Scholar 

  31. P. T. T. Wong, D. J. Siminovitch, and H. H. Mantsch, Biochim. Biophys. Acta 947, 139 (1988).

    Article  Google Scholar 

  32. F. M. Goni and J. L. Arrondo, Faraday Discuss. Chem. Soc. 81, 117 (1986).

    Article  Google Scholar 

  33. T. Shimanouchi, M. Sasaki, A. Hiroiwa, et al., Colloids Surf. B: Biointerfaces 88, 221 (2011).

    Article  Google Scholar 

  34. S. J. Hug, J. Colloid Interface Sci. 188, 415 (1997).

    Article  ADS  Google Scholar 

  35. K. Glasmastar, C. Larsson, F. Hook, and B. Kasemo, J. Colloid Interface Sci. 246 (1), 40 (2002).

    Article  ADS  Google Scholar 

  36. R. Koynova and B. Tenchov, in Wiley Encyclopedia of Chemical Biology (Wiley, Hoboken, NJ, 2009), Vol. 2, pp. 601–615.

    Google Scholar 

  37. P. Jia, M. He, Y. Gong, et al., ACS Appl. Mater. Interfaces 7 (12), 6422 (2015).

    Article  Google Scholar 

  38. T. Nezu, M. Taira, S. Saitoh, et al., Int. J. Biol. Macromol. 46 (4), 396 (2010).

    Article  Google Scholar 

  39. S. R. Baker and R. A. S. Ariens, in Cardiovascular Thrombus, Ed. by O. Topaz (Academic, London, 2018), pp. 31–49.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

Studies using scanning electron microscopy were performed at the Interdisciplinary Center Analytical Microscopy of Kazan Federal University (Kazan).

Funding

The work was performed under State assignment of FRC KazSC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Faizullin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This paper does not describe studies using humans and animals as objects.

Additional information

Translated by E. Puchkov

Abbreviations: DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol); POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizullin, D.A., Valiullina, Y.A., Salnikov, V.V. et al. Fibrinogen Adsorption on the Lipid Surface as a Factor of Regulation of Fibrin Formation. BIOPHYSICS 66, 70–76 (2021). https://doi.org/10.1134/S0006350921010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921010103

Navigation