Skip to main content
Log in

The Sigma-1 Receptor Ligand Chlorpromazine Attenuates Store-Dependent Ca2+ Entry in Peritoneal Macrophages

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Using Fura-2AM, a fluorescent Ca2+ indicator, we have shown for the first time that sigma-1 receptor antagonist - neuroleptic chlorpromazine - significantly inhibits the store-dependent Ca2+ entry induced by immunomodulators glutoxim as well as molixan and endoplasmic reticulum Са2+-ATPase inhi-bitors thapsigargin and cyclopiazonic acid in rat peritoneal macrophages. The results suggest the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+ entry in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. W. Putney, Cell Calcium 11, 611 (1990).

    Article  Google Scholar 

  2. J. W. Putney, Adv. Exp. Med. Biol. 981, 205 (2017).

    Article  Google Scholar 

  3. J. W. Putney, Neurochem. Res. 36, 1157 (2011).

    Article  Google Scholar 

  4. M. Prakriya and R. S. Lewis, Physiol. Rev. 95, 1383 (2015).

    Article  Google Scholar 

  5. L. Vaca, Cell Calcium 47, 199 (2010).

    Article  Google Scholar 

  6. C. Moreno and L. Vaca, in Store-operated Ca 2+ Entry (SOCE) Pathways (Springer, Wien, 2012), pp. 93–113.

    Google Scholar 

  7. R. M. Nwokonko, X. Cai, N. A. Loktionova, et al., Adv. Exp. Med. Biol. 993, 83 (2017).

    Article  Google Scholar 

  8. N. T. Nguyen, W. Han, W.-M. Cao, et al., Compr. Physiol. 8, 981 (2018).

    Article  Google Scholar 

  9. V. Lunz, C. Romanin, and I. Frischauf, Cell Calcium 77, 29 (2019).

    Article  Google Scholar 

  10. C. G. Rousseaux and S. F. Greene, J. Recept. Signal Transduct. 36, 327 (2016).

    Google Scholar 

  11. T.-P. Su, T. Hayashi, T. Maurice, et al., Trends Pharmacol. Sci. 31, 557 (2010).

    Article  Google Scholar 

  12. T. Hayashi and T.-P. Su, Cell 131, 596 (2007).

    Article  Google Scholar 

  13. E. J. Cobos, J. M. Entrena, F. R. Nieto, et al., Curr. Neuropharmacol. 6, 344 (2008).

    Article  Google Scholar 

  14. Z. I. Krutetskaya, L. S. Milenina, A. A. Naumova, et al., Dokl. Biochem. Biophys. 472 (1), 81 (2017).

    Article  Google Scholar 

  15. Z. I. Krutetskaya, L. S. Milenina, A. A. Naumova, et al., Dokl. Biochem. Biophys. 480 (1), 152 (2018).

    Article  Google Scholar 

  16. Y. Itzhak, M. Ruhland, and H. Krahling, Neuropharmacology 29, 181 (1990).

    Article  Google Scholar 

  17. R. E. Conrad, in Manual of Macrophages Methodology (Marcell Dekker, New York, 1981), pp. 5–11.

    Google Scholar 

  18. C. Randriamampita and A. Trautmann, Cell Biol. 105, 761 (1987).

    Article  Google Scholar 

  19. R. A. Monahan, H. F. Dvorak, and A. M. Dvorak, Blood 58, 1089 (1981).

    Article  Google Scholar 

  20. J. I. E. Bruce and A. C. Elliott, Br. J. Physiol. 131,761 (2000).

    Google Scholar 

  21. Q. Xie, Y. Zhang, C. Zhai, et al., J. Biol. Chem. 277, 16559 (2002).

    Article  Google Scholar 

  22. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).

    Article  Google Scholar 

  23. J. L. Harper and J. W. Daly, Drug Dev. Res. 47, 107 (1999).

    Article  Google Scholar 

  24. S.-Y. Choi, Y.-H. Kim, Y.-K. Lee, et al., Br. J. Pharmacol. 132, 411 (2001).

    Article  Google Scholar 

  25. M. S. Amer, L. McKeown, S. Tumova, et al., Br. J. Pharmacol. 168, 1445 (2013).

    Article  Google Scholar 

  26. N. C. McNaughton, P.J. Green, and A. D. Randall, Acta Physiol. Scand. 173, 401 (2001).

    Article  Google Scholar 

  27. Z. I. Krutetskaya, L.S. Milenina, A. A. Naumova, et al., Dokl. Biochem. Biophys. 481 (1), 222 (2018).

    Article  Google Scholar 

  28. S. Srivats, D. Balasuriya, M. Pasche, et al., J. Cell Biol. 213, 65 (2016).

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of the research program of the Department of Biophysics of St. Petersburg State University and the Department of Clinical Biochemistry and Laboratory Diagnostics of the Military Medical Academy named after S.M. Kirov (St. Petersburg), as well as the Contract for the implementation of research works, project no. 28-12-38.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Milenina or Z. I. Krutetskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The animals and all manipulations with them were carried out in accordance with the regulations and requirements of the Order of Ministry of Health of the Russian Federation No. 267 of 19.06.03 “On approval of rules for laboratory practice in the Russian Federation.”

Additional information

Translated by E. Puchkov

Abbreviation: [Ca2+]i, intracellular concentration of Ca2+.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milenina, L.S., Krutetskaya, Z.I., Antonov, V.G. et al. The Sigma-1 Receptor Ligand Chlorpromazine Attenuates Store-Dependent Ca2+ Entry in Peritoneal Macrophages. BIOPHYSICS 66, 77–83 (2021). https://doi.org/10.1134/S0006350921010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921010115

Navigation