Skip to main content
Log in

The Antioxidant Capacity of Aqueous Extracts from Yerba Mate (Ilex paraguariensis)

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The antioxidant capacity of aqueous extracts from yerba mate and some of its polyphenolic components, namely, quercetin, rutin, chlorogenic and caffeic acids, was studied. Aqueous extracts from mate discolored the cation radicals of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) in a dose-dependent manner and caused a latent period of luminol chemiluminescence induced by 2,2'-azobis(2-amidinopropane) dihydrochloride. The following sequence of the studied substances in order of decreasing antioxidant capacity: quercetin, rutin, chlorogenic acid, and caffeic acid occurred in both model systems, represented as trolox equivalents. The antioxidant capacity of quercetin was higher than that of chlorogenic and caffeic acids. An increase was found in the antioxidant capacity of blood plasma in healthy volunteers which was assessed with the chemiluminescent system at 1 and 2 h after a single consumption of a tea made from 8 g of mate. The results show that aqueous extracts from yerba mate can be used to create phytopreparations with antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Zuo, E. R. Prather, M. Stetskiv, et al., Int. J. Mol. Sci. 20 (18), 4472 (2019).

    Article  Google Scholar 

  2. A. Singh, R. Kukreti, L. Saso, and S. Kukreti, Molecules 24 (8), 1583 (2019).

    Article  Google Scholar 

  3. I. Uchmanowicz, Adv. Exp. Med. Biol. 1216, 65 (2020).

    Article  Google Scholar 

  4. A. Chandrasekara and F. Shahidi, J. Tradit. Complement. Med. 8 (4), 451 (2018).

    Article  Google Scholar 

  5. S. Dudonne, X. Vitrac, P. Coutiere, et al., J. Agric. Food Chem. 57 (5), 1768 (2009).

    Article  Google Scholar 

  6. K. A. Berte, M. R. Beux, P. K. Spada, et al., J. Agric. Food Chem. 59 (10), 523 (2011).

    Article  Google Scholar 

  7. C. I. Heck and E. G. de Mejia, J. Food Sci. 72 (9), R138 (2007).

    Article  Google Scholar 

  8. N. Bracesco, A. G. Sanchez, V. Contreras, et al., J. Ethnopharmacol. 136 (3), 378 (2011).

    Article  Google Scholar 

  9. A. T. Valduga, I. L. Goncalves, E. Magri, and J. R. Delalibera Finzer, Food Res. Int. 120, 478 (2019).

    Article  Google Scholar 

  10. R. Y. Gan, D. Zhang, M. Wang, and H. Corke, Nutrients 10 (11), 1682 (2018).

    Article  Google Scholar 

  11. D. H. Bastos, L. A. Saldanha, R. R. Catharino, et al., Molecules 12 (3), 423 (2007).

    Article  Google Scholar 

  12. M. Bixby, L. Spieler, T. Menini, and A. Gugliucci, Life Sci. 77 (3), 345 (2005).

    Article  Google Scholar 

  13. C. Anesini, S. Turner, L. Cogoi, and R. Filip, LWT — Food Sci. Technol. 45, 299 (2012).

    Article  Google Scholar 

  14. M. Bojić, V. Simon Haas, D. Sarić, and Z. Maleš, J. Anal. Methods Chem. 2013, 658596 (2013).

    Article  Google Scholar 

  15. G. R. Schinella, G. Troiani, V. Davila, et al., Biochem. Biophys. Res. Commun. 269 (2), 357 (2000).

    Article  Google Scholar 

  16. A. Gugliucci, Biochem. Biophys. Res. Commun. 224 (2), 338 (1996).

    Article  Google Scholar 

  17. N. Bracesco, M. Dell, and A. Rocha, J. Altern. Complement. Med. 9 (3), 379 (2003).

    Article  Google Scholar 

  18. F. Martins, A. J. Suzan, S. M. Cerutti, et al., Br. J. Nutr. 101 (4), 527 (2009).

    Article  Google Scholar 

  19. L. Bravo, R. Mateos, B. Sarria, et al., Fitoterapia 92, 219 (2014).

    Article  Google Scholar 

  20. L. F. Gonzalez Arbelaez, J. C. Fantinelli, A. Ciocci Pardo, et al., Food Funct. 7 (2), 816 (2016).

    Article  Google Scholar 

  21. A. C. Colpo, M. E. de Lima, M. Maya-Lopez, et al., Appl. Physiol. Nutr. Metab. 42 (11), 1172 (2017).

    Article  Google Scholar 

  22. R. L. Matsumoto, D. H. Bastos, S. Mendonca, et al., J. Agric. Food Chem. 57 (5), 1775 (2009).

    Article  Google Scholar 

  23. A. M. Becker, H. P. Cunha, A. C. Lindenberg, et al., Plant Foods Hum. Nutr. 74 (4), 495 (2019).

    Article  Google Scholar 

  24. B. C. Boaventura, P. F. Di Pietro, A. Stefanuto, et al., Nutrition 28 (6), 657 (2012).

    Article  Google Scholar 

  25. W. Y. Huang, P. C. Lee, J. C. Hsu, et al., Sci. World J. 2014, 768742 (2014).

    Google Scholar 

  26. R. G. Peres, F. G. Tonin, M. F. Tavares, and D. B. Rodriguez-Amaya, Molecules 18 (4), 3859 (2013).

    Article  Google Scholar 

  27. R. Re, N. Pellegrini, A. Proteggente, et al., Free Radic. Biol. Med. 26 (9-10), 1231 (1999).

    Article  Google Scholar 

  28. Yu. O. Teselkin, I. V. Babenkova, and A. N. Osipov, Biophysics (Moscow) 64 (5), 708 (2019).

    Article  Google Scholar 

  29. M. Gomez-Juaristi, S. Martinez-Lopez, B. Sarria, et al., Food Chem. 240, 1028 (2018).

    Article  Google Scholar 

  30. N. Erkan, G. Ayranci, and E. Ayranci, Food Chem. 110 (1), 76 (2008).

    Article  Google Scholar 

  31. L. M. Magalhaes, M. A. Segundo, S. Reis, and J. L. Lima, Anal. Chim. Acta 613 (1), 1 (2008).

    Article  Google Scholar 

  32. R. Apak, M. Ozyurek, K. Guclu, and E. Capanoğlu, J. Agric. Food Chem. 64 (5), 997 (2016).

    Article  Google Scholar 

  33. R. Apak, M. Ozyurek, K. Guclu, and E. Capanoğlu, J. Agric. Food Chem. 64 (5), 1028 (2016).

    Article  Google Scholar 

  34. D. M. de Oliveira, C. B. Pinto, G. R. Sampaio, et al., J. Agric. Food Chem. 61 (25), 6113 (2013).

    Article  Google Scholar 

  35. B. C. B. Boaventura, E. L. da Silva, R. H. Liu, et al., LWT – Food Sci. Technol. 62, 948 (2015).

    Article  Google Scholar 

  36. S. Y. Kim, M. R. Oh, M. G. Kim, et al., BMC Complement. Altern. Med. 15, 338 (2015).

    Article  Google Scholar 

  37. S. Yu, S. W. Yue, Z. Liu, et al., Exp. Gerontol. 62, 14 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Teselkin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in the human study were in accordance with the ethical standards of the 1964 Helsinki Declaration and its subsequent amendments. Informed voluntary consent was obtained from all participants to participate in the study.

Additional information

Translated by E. Puchkov

Abbreviations: TBA-RP, thiobarbituric acid reactive products of lipid peroxidation; ABAP, 2,2'-azobis(2-amidinopropane) dihydrochloride; ABTS, diammonium salt of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teselkin, Y.O., Babenkova, I.V., Pavlova, L.A. et al. The Antioxidant Capacity of Aqueous Extracts from Yerba Mate (Ilex paraguariensis). BIOPHYSICS 66, 125–132 (2021). https://doi.org/10.1134/S0006350921010176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921010176

Navigation