Skip to main content
Log in

The Characteristics and Seasonal Variation of Methane Fluxes From an Alpine Wetland in the Qinghai Lake watershed, China

  • Wetlands and Global Change
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Alpine wetlands are an important natural source of methane (CH4) to the atmosphere. However, the temporal variations and main driving factors of CH4 fluxes in alpine wetlands are not yet well understood. In this study, CH4 fluxes were measured from an alpine wetland in the Qinghai Lake using eddy covariance (EC) technique. Strong seasonal variability in the daily CH4 fluxes was observed, ranging from − 18.24 mg CH4 m− 2 d− 1 during the non-growing season to 117.44 mg CH4 m− 2 d− 1 during the growing season in 2017. The annual CH4 budget was 9.41 g CH4 m− 2. The growing season CH4 flux accounted for 91.5 % of the annual budget. At the daily scale, the CH4 fluxes increased significantly as the net radiation, air temperature, vapor pressure deficit, soil temperature, and soil volumetric water content at 5 cm depth increased. Additionally, correlation analysis also revealed that daily CH4 flux was significantly related to CO2 flux when daily CO2 flux was negative, but there was no correlation when daily CO2 flux was positive. Path analysis showed that seasonal variations of soil temperature at 5 cm depth and CO2 flux had strong direct effects on daily CH4 fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

“Not applicable” for this section.

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Rome

  • Bubier JL, Moore TR (1994) An ecological perspective on methane emissions from northern wetlands. Trends in Ecology Evolution 9(12):460–464

    Article  CAS  PubMed  Google Scholar 

  • Cao SK, Cao GC, Feng Q, Han GC, Lin YY, Yuan J, Wu F, Cheng SY (2017) Alpine wetland ecosystem carbon sink and its controls at the Qinghai Lake. Environ Earth Sci 76:210

    Article  Google Scholar 

  • Centeno CAR, Alberto MCR, Wassmann R, Sander BO (2017) Assessing diel variation of CH4 flux from rice paddies through temperature patterns. Atmospheric Environment 167:23–39

    Article  CAS  Google Scholar 

  • Chen H, Yao SP, Wu N, Wang YF, Luo P, Tian JQ, Gao YH, Sun G (2008) Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. Journal of GeophysicalResearch 113:D12303

    Google Scholar 

  • Chen H, Wu N, Gao YH, Wang YF, Luo P, Tian JQ (2009) Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China. Science of the TotalEnvironment 407(3):1097–1104

    CAS  Google Scholar 

  • Cheng GD, Wu TH (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of GeophysicalResearch 112:F02S03

    Google Scholar 

  • Dai SP, Ju WM, Zhang YG, He QN, Song L, Li J (2019) Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales. Science of the TotalEnvironment 690:973–990

    CAS  Google Scholar 

  • Deng Y, Liu P, Conrad R (2019) Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biology andBiochemistry 132:69–79

    Article  CAS  Google Scholar 

  • Detto M, Verfaillie J, Anderson F, Xu L, Baldocchi D (2011) Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agricultural and ForestMeteorology 151(10):1312–1324

    Google Scholar 

  • Ding W, Cai Z, Wang D (2004) Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment 38:751–759

    Article  CAS  Google Scholar 

  • Dinsmore KJ, Skiba UM, Billett MF, Rees RM, Drewer J (2009) Spatial and temporal variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland: implications for modelling and up-scaling. Soil Biology and Biochemistry 41:1315–1323

    Article  CAS  Google Scholar 

  • Fortuniak K, Pawlak W, Bednorz L, Grygoruk M, Siedlecki M, Zieliński M (2017) Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agricultural and ForestMeteorology 232:306–318

    Google Scholar 

  • Ge HX, Zhang HS, Zhang H, Cai XH, Song Y, Kang L (2018) The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agricultural and ForestMeteorology 249:228–238

    Google Scholar 

  • Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD (2012) Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems and Environment 150:1–18

    Article  CAS  Google Scholar 

  • Hendriks DMD, Van Huissteden J, Dolman AJ, Van Der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411–424

    Article  CAS  Google Scholar 

  • Herbst M, Friborg T, Ringgaard R, Soegaard H (2011) Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agricultural and ForestMeteorology 151(7):841–853

    Google Scholar 

  • Hirota M, Tang Y, Hu Q, Hirata S, Kato T, Mo W, Cao G, Mariko S (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology andBiochemistry 36(5):737–748

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change 2013. The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Iwata H, Harazono Y, Ueyama M, Sakabe A, Nagano H, Kosugi Y, Takahashi K, Kim Y (2015) Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique. Agricultural and ForestMeteorology 214–215:157–168

    Google Scholar 

  • Jin HJ, Wu J, Cheng GD, Tomoko N, Sun GY (1999) Methane emissions from wetlands on the Qinghai-Tibet Plateau. Chinese Science Bulletin 44(24):2282–2286

    Article  CAS  Google Scholar 

  • Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7(8):919–932

    Article  Google Scholar 

  • Kato T, Hirota M, Tang Y, Wada E (2011) Spatial variability of CH4 and N2O fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau. Atmospheric Environment 45:5632–5639

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187–191

    Article  CAS  PubMed  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR et al (2013) Three decades of global methane sources and sinks. Nature Geoscience 6(10):813–823

    Article  CAS  Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint prediction. Boundary-Layer Meteorology 112:503–523

    Article  Google Scholar 

  • Kowalska N, Chojnicki BH, Rinne J, Haapanala S, Siedlecki P, Urbaniak M, Juszczak R, Olejnik J (2013) Measurements of methane emission from a temperate wetland by the eddy covariance method. International Agrophysics 27(3):283–290

    Article  CAS  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421

    Article  CAS  Google Scholar 

  • Laine A, Wilson D, Kiely G, Byrne KA (2007) Methane flux dynamics in an Irish lowland blanket bog. Plant and Soil 299(1):181–193

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37(1):25–50

    Article  Google Scholar 

  • Li H, Dai SQ, Ouyang ZT, Xie X, Guo HQ, Gu CH, Xiao XM, Ge ZM, Peng CH, Zhao B (2018) Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry 137(1–2):163–179

    Article  CAS  Google Scholar 

  • LI-COR Inc. (2010) LI-7700 open path CH4 analyzer instruction manual. LI-COR Inc., Lincoln

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20(14):1729–1742

    Article  Google Scholar 

  • LZBCAS (Lanzhou Branch of Chinese Academy of Sciences) (1994) Evolution of Recent Environment in Qinghai Lake and its Prediction. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package Tk2 (Tech. rep.). Abt. Mikrometeorologie, Universitt Bayreuth, Bayreuth

  • Meijide A, Manca G, Goded I, Magliulo V, di Tommasi P, Seufert G, Cescatti A (2011) Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences 8(12):3809–3821

    Article  CAS  Google Scholar 

  • Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology 188–189:589–611

    Article  Google Scholar 

  • Moncrieff JB, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. In: Lee X, Massman WJ, Law BE (eds) Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Morin TH, Bohrer G, Stefanik KC, Rey-Sanchez AC, Matheny AM, Mitsch WJ (2017) Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park. Agricultural and Forest Meteorology 237–238:160–170

    Article  Google Scholar 

  • Nadeau DF, Rousseau AN, Coursolle C, Margolis HA, Parlange MB (2013) Summer methane fluxes from a boreal bog in northern Quebec, Canada, using eddy covariance measurements. Atmospheric Environment 81:464–474

    Article  CAS  Google Scholar 

  • Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343(6170):493–495

    Article  CAS  PubMed  Google Scholar 

  • Peng HJ, Guo Q, Ding HW, Hong B, Zhu YX, Hong YT, Cai C, Wang Y, Yuan LG (2019) Multi-scale temporal variation in methane emission from an alpine peatland on the Eastern Qinghai-Tibetan Plateau and associated environmental controls. Agricultural and ForestMeteorology 276–277:107616

    Google Scholar 

  • Prajapati P, Santos EA (2017) Measurements of methane emissions from a beef cattle feedlot using the eddy covariance technique. Agricultural and ForestMeteorology 232:349–358

    Google Scholar 

  • Pullens JWM, Sottocornola M, Kiely G, Toscano P, Gianelle D (2016) Carbon fluxes of an alpine peatland in Northern Italy. Agricultural and ForestMeteorology 22:69–82

    Google Scholar 

  • Pypker TG, Moore PA, Waddington JM, Hribljan JA, Chimner RC (2013) Shifting environmental controls on CH4 fluxes in a sub-boreal peatland. Biogeosciences 10:7971–7981

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11(9):1424–1439

    Article  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13(2):397–411

    Article  Google Scholar 

  • Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G et al (2016) The global methane budget 2000–2012. Earth System Science Data 8(2):697–751

    Article  Google Scholar 

  • Schneider J, Jungkunst HF, Wolf U, Schreiber P, Gazovic M, Miglovets M, Mikhaylov O, Grunwald D, Erasmi S, Wilmking M, Kutzbach L (2016) Russian boreal peatlands dominate the natural European methane budget. Environmental Research Letters 11(1):014004

    Article  Google Scholar 

  • Simpson IJ, Thurtell GW, Kidd GE, Lin M, Demetriades-Shah TH, Flitcroft ID, Kanemasu ET, Nie D, Bronson KF, Neue HU (1995) Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines. Journal of Geophysical Research Atmospheres 100(D4):7283–7290

    Article  CAS  Google Scholar 

  • Song CC, Xu XF, Tian HQ, Wang YY (2009) Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology 15(3):692–705

    Article  Google Scholar 

  • Song WM, Wang H, Wang GS, Chen LT, Jin ZN, Zhuang QL, He JS (2015) Methane emissions from an alpine wetland on the Tibetan Plateau: neglected but vital contribution of the nongrowing season. Journal of Geophysical Research: Biogeosciences 120:1475–1490

    Article  CAS  Google Scholar 

  • Ström L, Falk JM, Skov K, Jackowicz-Korczynski M, Mastepanov M, Christensen TR, Lund M, Schmidt NM (2015) Controls of spatial and temporal variability in CH4 flux in a high arctic fen over three years. Biogeochemistry 125(1):21–35

    Article  Google Scholar 

  • Sun L, Song CC, Lafleur PM, Miao Y, Wang XQ, Gong C, Qiao TH, Yu XY, Tan WW (2018) Wetland-atmosphere methane exchange in Northeast China: a comparison of permafrost peatland and freshwater wetlands. Agricultural and ForestMeteorology 249:239–249

    Google Scholar 

  • Tang YH, Wan SQ, He JS, Zhao XQ (2009) Foreword to the special issue: looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology 2(4):169–171

    Article  Google Scholar 

  • Treat CC, Bloom AA, Marushchak ME (2018) Non-growing season methane emissions are a significant component of annual emissions across northern ecosystems. Global Change Biology 24(8):3331–3343

    Article  PubMed  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric andOceanic Technology 14(3):512–526

    Article  Google Scholar 

  • Wang M, Wu JH, Lafleur PM, Luan JW, Chen H, Zhu XB (2018) Temporal shifts in controls over methane emissions from a boreal bog. Agricultural and ForestMeteorology 262:120–134

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of theRoyal Meteorological Society 106(447):85–100

    Article  Google Scholar 

  • Wei D, Xu R, Tarchen T, Dai DX, Wang YS, Wang YH (2015) Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: evidence from two in situ measurements at 4758 and 4320 m above sea level. Journal of Geophysical Research: Biogeosciences 120(9):1741–1750

    Article  CAS  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Wille C, Kutzbach L, Sachs T, Wagner D, Pfeiffer EM (2008) Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Global Change Biology 14(6):1395–1408

    Article  Google Scholar 

  • Xu Q, Wu HM, Liu j (2014) Methane emissions from wetlands in China: effects of wetland type and climate zone. Carbon Management 5(5–6):535–541

    CAS  Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences 110(11):4309–4314

    Article  CAS  Google Scholar 

  • Zhang Q, Sun R, Jiang GQ, Xu ZW, Liu SM (2016) Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and ForestMeteorology 230–231:45–57

    Google Scholar 

  • Zhang H, Yao ZS, Ma L, Zheng XH, Wang R, Wang K, Liu CY, Zhang W, Zhu B, Tang XY, Hu ZH, Han SH (2019) Annual methane emissions from degraded alpine wetlands in the eastern Tibetan Plateau. Science of the TotalEnvironment 657:1323–1333

    CAS  Google Scholar 

  • Zhao ZL, Zhang YL, Liu LS, Liu FG, Zhang HF (2015) Recent changes in wetlands on the Tibetan Plateau: a review. Journal of GeographicalSciences 25(7):879–896

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 42061008), and the Qinghai Province Key Laboratory of Physical Geography and Environmental Process, China.

Funding

This study was supported by the National Natural Science Foundation of China (No. 31260130).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: SC CP. Performed the experiments: FW SC. Collected the data: FW. Analyzed the data: FW GC. Contributed analysis tools: KC. Wrote the paper: FW CP.

Corresponding authors

Correspondence to Shengkui Cao or Changhui Peng.

Ethics declarations

Ethics Approval

“Not applicable” for this section.

Consent to Participate

“Not applicable” for this section.

Consent for Publication

“Not applicable” for this section.

Conflicts of Interest/Competing Interests

“The authors declare that they have no competing interests” in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Cao, S., Cao, G. et al. The Characteristics and Seasonal Variation of Methane Fluxes From an Alpine Wetland in the Qinghai Lake watershed, China. Wetlands 41, 53 (2021). https://doi.org/10.1007/s13157-021-01415-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-021-01415-8

Keywords

Navigation