Skip to main content
Log in

Neuroproteomics: How a Multitude of Proteins Reflect Brain Functions

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review highlights recent reports of advances in quantitative neuroproteomics that use new methods to analyze brain functions. Functional neuroproteomics provides new insight into the mechanisms of brain function and neurodegenerative diseases by identifying expressed proteins and their interactions. Analysis of the brain’s proteome made it possible to establish the key proteins that underlie synaptic dysfunction in Alzheimer’s disease and to substantiate the important mechanisms for prognostic and diagnostic biomarkers of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adav, S.S., Park, J.E., and Sze, S.K., Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease, Mol. Brain, 2019, vol. 12, no. 1, p. 8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agoston, D.V. and Elsayed, M., Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder, Front. Neurol., 2012, vol. 3, p. 107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Archakov, A.I., What’s behind genomics? Proteomics, Vopr. Med. Khim., 2000, vol. 46, no. 4, pp. 335–343.

    CAS  PubMed  Google Scholar 

  4. Bastos, P., Ferreira, R., Manadas, B., et al., Insights into the human brain proteome: disclosing the biological meaning of protein in networks cerebrospinal fluid, Crit. Rev. Clin. Lab. Sci., 2017, vol. 54, no. 3, pp. 185–204.

    Article  CAS  PubMed  Google Scholar 

  5. Bateman, R.J., Xiong, C., Benzinger, T.L., et al., Clinical and biomarker changes in dominantly inherited Alzheimer’s disease, N. Eng. J. Med., 2012, vol. 367, pp. 795–804.

    Article  CAS  Google Scholar 

  6. Bayes, A. and Grant, S.G., Neuroproteomics: understanding the molecular organization and complexity of the brain, Nat. Rev. Neurosci., 2009, vol. 10, no. 9, pp. 635–646.

    Article  CAS  PubMed  Google Scholar 

  7. Bereczki, E., Francis, P.T., Howlett, D., et al., Synaptic proteins predict cognitive decline in Alzheimer’s disease and Lewy body dementia, Alzheimer’s Dementia, 2016, vol. 12, pp. 1149–1158.

    Article  PubMed  Google Scholar 

  8. Bereczki, E., Branca, R.M., Francis, P.T., et al., Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach, Brain, 2018, vol. 141, no. 2, pp. 582–595.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blackstock, W.P. and Weir, M.P., Proteomics: quantitative and physical mapping of cellular proteins, Trends Biotechnol., 1999, vol. 17, pp. 121–127.

    Article  CAS  PubMed  Google Scholar 

  10. Carrillo, M.C., Dean, R.A., Devous, M.D.S., et al., Revolutionizing Alzheimer’s disease and clinical trials through biomarkers, Alzheimer’s Dementia, 2015, vol. 1, pp. 412–419.

    PubMed  PubMed Central  Google Scholar 

  11. Casaletto, K.B., Elahi, F.M., Bettcher, B.M., et al., Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers, Neurology, 2017, vol. 89, no. 17, pp. 1782–1788.

  12. Chiasserini, D., van Weering, J.R.T., Piersma, S.R., et al., Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset, J. Proteomics, 2014, vol. 106, pp. 191–204.

    Article  CAS  PubMed  Google Scholar 

  13. Chick, J.M., Kolippakkam, D., Nusinow, D.P., et al., A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides, Nat. Biotechnol., 2015, vol. 33, pp. 743–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins, M.O., Yu, L., Coba, M.P., et al., Proteomic analysis of in vivo phosphorylated synaptic proteins, J. Biol. Chem., 2005, vol. 280, pp. 5972–5982.

    Article  CAS  PubMed  Google Scholar 

  15. Coughenour, H.D., Spaulding, R.S., and Thompson, C.M., The synaptic vesicle proteome: a comparative study in membrane protein identification, Proteomics, 2004, vol. 4, pp. 3141–3155.

    Article  CAS  PubMed  Google Scholar 

  16. Craft, G.E., Chen, A., and Nairn, A.C., Recent advances in quantitative neuroproteomics, Methods, 2013, vol. 61, no. 3, pp. 186–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cuadrado, E., Rosell, A., Penalba, A., et al., Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study, J. Proteome Res., 2009, vol. 8, no. 6, pp. 3191–3197.

    Article  CAS  PubMed  Google Scholar 

  18. Curran, S., McKay, J.A., McLeod, H.L., and Murray, G.I., Laser capture microscopy, Mol. Pathol., 2000, vol. 53, pp. 64–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeKosky, S.T. and Scheff, S.W., Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity, Ann. Neurol., 1990, vol. 27, pp. 457–464.

    Article  CAS  PubMed  Google Scholar 

  20. Del Campo, M., Mollenhauer, B., Bertolotto, A., et al., Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: an update, Biomarkers Med., 2012, vol. 6, pp. 419–430.

    Article  CAS  Google Scholar 

  21. Dubois, B., Hampel, H., Feldman, H.H., et al., Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria, Alzheimer’s Dementia, 2016, vol. 12, pp. 292–323.

    Article  PubMed  Google Scholar 

  22. Duits, F.H., Brinkmalm, G., Teunissen, C.E., et al., Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease, Alzheimer’s Res. Ther., 2018, vol. 10, no. 1, p. 5.

    Article  CAS  Google Scholar 

  23. Frank, R.A. and Grant, S.G., Supramolecular organization of NMDA receptors and the postsynaptic density, Curr. Opin. Neurobiol., 2017, vol. 45, pp. 139–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gajera, C.R., Fernandez, R., Postupna, N., et al., Mass synaptometry: high-dimensional multi parametric assay for single synapses, J. Neurosci. Methods, 2019, vol. 312, pp. 73–83.

    Article  PubMed  Google Scholar 

  25. Gomazkov, O.A., Why neuropeptides are universal regulators? Priroda (Moscow), 1999, no. 3, pp. 3–13.

  26. Guan, J.S., Su, S.C., Gao, J. et al. Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway, PLoS One, 2011, vol. 6, no. 9, p. e25735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, X.Y., Dan, Q.Q., Wang, F., et al., Protein network analysis of the serum and their functional implication in patients subjected to traumatic brain injury, Front. Neurosci., 2019, vol. 12, p. 1049.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hedl, T.J., San Gil, R., Cheng, F., et al., Proteomics approaches for biomarker and drug target discovery in ALS and FTD, Front. Neurosci., 2019, vol. 13, p. 548.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Higginbotham, L., Dammer, E.B., Duong, D.M., et al., Network analysis of a membrane-enriched brain proteome across stages of Alzheimer’s disease, Proteomes, 2019, vol. 7, no. 3, p. e30.

    Article  CAS  Google Scholar 

  30. Hondius, D.C., van Nierop, P., Li, K.W., et al., Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease, Alzheimer’s Dementia, 2016, vol. 12, pp. 654–668.

    Article  PubMed  Google Scholar 

  31. Hu, Y., Malone, J.P., Fagan, A.M., et al., Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid, Mol. Cell. Proteomics, 2005, vol. 4, no. 12, pp., 2000–2009.

  32. Ibáñez, C., Cifuentes, A., and Simó, C., Recent advances and applications of metabolomics to investigate neurodegenerative diseases, Int. Rev. Neurobiol., 2015, vol. 122, pp. 95–132.

    Article  PubMed  CAS  Google Scholar 

  33. Jack, C.R., Knopman, D.S., Jagust, W.J., et al., Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade, Lancet Neurol., 2010, vol. 9, pp. 119–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson, E.C.B., Dammer, E.B., Duong, D.M., et al., Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease, Mol. Neurodegener., 2018, vol. 13, no. 1, p. 52.

  35. Kim, M.S., Pinto, S.M., Getnet, D., et al., A draft map of the human proteome, Nature, 2014, vol. 509, no. 7502, pp. 575–581.

  36. Kirvell, S.L., Esiri, M., and Francis, P.T., Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease, J. Neurochem., 2006, vol. 98, pp. 939–950.

    Article  CAS  PubMed  Google Scholar 

  37. Klein, H.U., Bennett, D.A., and De Jager, P.L., The epigenome in Alzheimer’s disease: current state and approaches for a new path to gene discovery and understanding disease mechanism, Acta Neuropathol., 2016, vol. 132, pp. 503–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koshtoyants, Kh.S., Belkovye tela, obmen veshchestv i nervnaya regulyatsiya (Protein Bodies, Metabolism, and Nervous Regulation), Moscow: Akad. Nauk SSSR, 1951.

  39. Lachén-Montes, M., González-Morales, A., Fernández-Irigoyen, J., and Santamaría, E., Determination of cerebrospinal fluid proteome variations by isobaric labeling coupled with strong cation-exchange chromatography and tandem mass spectrometry, Methods Mol. Biol., 2019, vol. 2044, pp. 155–168.

    Article  PubMed  CAS  Google Scholar 

  40. Lamond, A.I., Uhlen, M., Horning, S., et al., Advancing cell biology through proteomics in space and time, Mol. Cell. Proteomics., 2012, vol. 11, no. 3, p. O112.017731.

  41. Leverenz, J.B., Umar, I., Wang, Q., et al., Proteomic identification of novel proteins in cortical Lewy bodies, Brain Pathol., 2007, vol. 17, no. 2, pp. 139–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, K.W., Ganz, A.B., and Smit, A.B., Proteomics of neurodegenerative diseases: analysis of human post-mortem brain, J. Neurochem., 2019, vol. 151, no. 4, pp. 435–445.

    Article  CAS  PubMed  Google Scholar 

  43. Lleó, A., Núñez-Llaves, R., Alcolea, D., et al., Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer’s disease cerebrospinal fluid, Mol. Cell Proteomics, 2019, vol. 18, no. 3, pp. 546–560.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Macron, C., Lane, L., Núñez Galindo, A., and Dayon, L., Deep dive on the proteome of human cerebrospinal fluid: a valuable data resource for biomarker discovery and missing protein identification, J. Proteome Res., 2018, vol. 17, no. 12, pp. 4113–4126.

    Article  CAS  PubMed  Google Scholar 

  45. Masliah, E., Mallory, M., Alford, M., et al., Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease, Neurology, 2001, vol. 56, pp. 127–129.

    Article  CAS  PubMed  Google Scholar 

  46. Mendonça, C.F., Kuras, M., Nogueira, F.C.S., et al., Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer’s disease, Neurobiol. Dis., 2019, vol. 130, p. e104509.

    Article  CAS  Google Scholar 

  47. Morciano, M., Burre, J., Corvey, C., et al., Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis, J. Neurochem., 2005, vol. 95, pp. 1732–1745.

    Article  CAS  PubMed  Google Scholar 

  48. Moya-Alvarado, G., Gershoni-Emek, N., Perlson, E., and Bronfman, F.C., Neurodegeneration and Alzheimer’s disease. What can proteomics tell us about the Alzheimer’s brain?, Mol. Cell Proteomics, 2016, vol. 15, pp. 409–425.

    Article  CAS  PubMed  Google Scholar 

  49. Natividad, L.A., Buczynski, M.W., McClatchy, D.B., and Yates, J.R., From synapse to function: a perspective on the role of neuroproteomics in elucidating mechanisms of drug addiction, Proteomes, 2018, vol. 6, no. 4, p. e50.

    Article  CAS  Google Scholar 

  50. Núñez Galindo, A., Macron, C., Cominetti, O., and Dayon, L., Analyzing cerebrospinal fluid proteomes to characterize central nervous system disorders: a highly automated mass spectrometry-based pipeline for biomarker discovery, Methods Mol. Biol., 2019, vol. 1959, pp. 89–112.

    Article  PubMed  CAS  Google Scholar 

  51. Olsen, J.V., Nielsen, P.A., Andersen, J.R., et al., Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels, Brain Res., 2007, vol. 1134, no. 1, pp. 95–106.

    Article  CAS  PubMed  Google Scholar 

  52. Otto, M., Bowser, R., Turner, M., et al., Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS, Amyotrophic Lateral Scler., 2012, vol. 13, pp. 1–10.

    Article  Google Scholar 

  53. Perrin, R.J., Payton, J.E., Malone, J.P., et al., Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation, PLoS One, 2013, vol. 8, no. 5, p. e64314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reiber, H., Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics, Restor. Neurol. Neurosci., 2003, vol. 21, nos. 3–4, pp. 79–96.

    CAS  PubMed  Google Scholar 

  55. Rockenstein, E., Nuber, S., Overk, C.R., et al., Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo, Brain, 2014, vol. 137, no. 5, pp. 1496–1513.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scheff, S.W., Price, D.A., Schmitt, F.A., et al., Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment, Neurology, 2007, vol. 68, pp. 1501–1508.

    Article  CAS  PubMed  Google Scholar 

  57. Schilde, L.M., Kösters, S., Steinbach, S., et al., Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research, PLoS One, 2018, vol. 13, no. 11, p. e0206478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Seyfried, N.T., Dammer, E.B., Swarup, V., and Nandakumar, D., A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease, Cell Syst., 2017, vol. 4, no. 1, pp. 60–72.

    Article  CAS  PubMed  Google Scholar 

  59. Shevchenko, G., Konzer, A., Musunuri, S., and Bergquist, J., Neuroproteomics tools in clinical practice, J. Biochim. Biophys. Acta, 2015, vol. 1854, no. 7, pp. 705–717.

    Article  CAS  Google Scholar 

  60. Spector, R., Snodgrass, R.S., and Johanson, C.E., A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans, Exper. Neurol., 2015, vol. 273, pp. 57–68.

    Article  CAS  Google Scholar 

  61. Sultana, R., Perluigi, M., and Butterfield, D.A., Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics, Antioxid. Redox Signaling, 2006, vol. 8, pp. 2021–2037.

    Article  CAS  Google Scholar 

  62. Takamori, S., Holt, M., Stenius, K., et al., Molecular anatomy of a trafficking organelle, Cell, 2006, vol. 127, pp. 831–846.

    Article  CAS  PubMed  Google Scholar 

  63. Terry, R.D., Masliah, E., Salmon, D.P., et al., Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol., 1991, vol. 30, pp. 572–580.

    Article  CAS  PubMed  Google Scholar 

  64. Teunissen, C.E., Petzold, A., Bennett, J.L., et al., A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking, Neurology, 2009, vol. 73, pp. 1914–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trinidad, J.C., Thalhammer, A., Specht, C.G., et al., Quantitative analysis of synaptic phosphorylation and protein expression, Mol. Cell Proteomics, 2008, vol. 7, no. 4, pp. 684–696.

    Article  CAS  PubMed  Google Scholar 

  66. Verstraeten, A., Theuns, J., and van Broeckhoven, C., Progress in unraveling the genetic etiology of Parkinson disease in a genomic era, Trends Genet., 2015, vol. 31, pp. 140–149.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Q., Woltjer, R.L., Cimino, P.J., et al., Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein, FASEB J., 2005, vol. 19, no. 7, pp. 869–871.

    Article  CAS  PubMed  Google Scholar 

  68. Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., et al., Progress with gene-product mapping of the Mollicutes: mycoplasma genitalium, Electrophoresis., 1995, vol. 7, pp. 1090–1094.

    Article  Google Scholar 

  69. Westwood, S., Baird, A.L., Anand, S.N., et al., Validation of plasma proteomic biomarkers relating to brain amyloid burden in the EMIF-Alzheimer’s disease multimodal biomarker discovery cohort, J. Alzheimer’s Dis., 2020, vol. 74, pp. 213–225.

    Article  CAS  Google Scholar 

  70. Wilkins, M. Proteomics data mining, Exp. Rev. Proteomics, 2009, vol. 6, no. 6, pp. 599–603.

    Article  Google Scholar 

  71. Wilson, R.S. and Nairn, A.C., Cell-type-specific proteomics: a neuroscience perspective, Proteomes, 2018, vol. 6, no. 4, p. e51.

    Article  CAS  Google Scholar 

  72. Wingo, A.P., Dammer, E.B., Breen, M.S., et al., Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age, Nat. Commun., 2019, vol. 10, no. 1, p. 1619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Xiong, X.G., Liang, Q., Zhang, C., et al., Serum proteome alterations in patients with cognitive impairment after traumatic brain injury revealed by iTRAQ-based quantitative proteomics, Biomed. Res. Int., 2017, vol. 2017, art. ID 8572509.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Q., Ma, C., Gearing, M., and Wang, P.G., Integrated proteomics and network analysis identifies protein hubs and network alterations in Alzheimer’s disease, Acta Neuropathol. Commun., 2018, vol. 6, no. 1, art. ID 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhu, H., Tamura, T., and Hamachi, I., Chemical proteomics for subcellular proteome analysis, Curr. Opin. Chem. Biol., 2019, vol. 48, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to thank Prof. N.A. Krupina and Prof. V.G. Zgoda for their valuable comments and support of this article.

Funding

The work was carried out within the framework of the Russian State Academies of Sciences Fundamental Research Program for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomazkov, O.A. Neuroproteomics: How a Multitude of Proteins Reflect Brain Functions. Biol Bull Rev 11, 143–153 (2021). https://doi.org/10.1134/S2079086421020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421020043

Keywords:

Navigation