Skip to main content
Log in

Effects of the Composition and Molecular Structure of Asphaltenes on the Properties of Heavy Petroleum Feedstock Represented by Heavy Oil from the Ashalchinskoye Field and Two Vacuum Residue Samples

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A combination of analytical methods (including CHNS-O elemental analysis, X-ray diffraction, 1H and 13C NMR spectroscopy, MALDI-TOF and ICP mass spectrometry) was used to determine the elemental composition and average molecular and structural parameters of asphaltenes isolated from a heavy oil sample from the Ashalchinskoye field and vacuum residue samples from two different Russian oil refineries. The study identified differences in the nano-aggregate size of asphaltenes in heavy oil and vacuum residues, and evaluated the effects of the composition and molecular structure of asphaltenes on the composition and properties of the heavy petroleum feedstock samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sergienko, S.R., Taimova, B.A., and Talalaev, E.I., Vysokomolekulyarnye neuglevodorodnye soedineniya nefti (High Molecular Weight Non-Hydrocarbon Compounds of Oil), Moscow: Nauka, 1979.

  2. Tukhvatullina, A.Z., Barskaya, E.E., Kouryakov, V.N., Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., J. Pet. Environ. Biotechnol., 2013, vol. 4, no. 4, pp. 1–8. https://doi.org/10.4172/2157-7463.1000152

    Article  Google Scholar 

  3. Honse, S.O., Mansur, C.R.E., and Lucas, E.F., J. Braz. Chem. Soc., 2012, vol. 23, no. 12, pp. 2204–2210. https://doi.org/10.1590/S0103-50532013005000002

    Article  CAS  Google Scholar 

  4. Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Creek, J., Kabir, S., Jamaluddin, A.J., Marshall, A.G., Rodgers, R.P., Mullins, O.C., and Solbakken, T., Oilfield Rev., 2007, vol. 19, no. 2, pp. 22–43.

    CAS  Google Scholar 

  5. Mullins, O.C. and Sheu, E.Y., Structure and Dynamics of Asphaltenes, New York: Springer, 1998.

  6. Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, pp. 993–1008. https://doi.org/10.1070/RC2011v080n10ABEH004174

    Article  CAS  Google Scholar 

  7. Mullins, O.C., Ann. Rev. Anal. Chem., 2011, vol. 4, no. 1, pp. 393–418. https://doi.org/10.1146/annurev-anchem-061010-113849

    Article  CAS  Google Scholar 

  8. Mullins, O.C., Energy Fuels, 2010, vol. 24, no. 4, pp. 2179–2207. https://doi.org/10.1021/ef900975e

    Article  CAS  Google Scholar 

  9. Sedghi, M., Goual, L., Welch, W., and Kubelka, J., J. Phys. Chem. B, 2013, vol. 117, no. 18, pp. 5765–5776. https://doi.org/10.1021/jp401584u

    Article  CAS  PubMed  Google Scholar 

  10. Ramirez-Corredores, M.M., The Science and Technology of Unconventional Oils: Finding Refining Opportunities, London: Academic Press, 2017.

  11. Fan, M., Sun, X., Xu, Z., Zhao, S., Xu, C., and Chung, K.H., Energy Fuels, 2011, vol. 25, no. 7, pp. 3060–3067. https://doi.org/10.1021/ef2003359

    Article  CAS  Google Scholar 

  12. Ariza, E., Chaves-Guerrero, A., and Molina, V.D., Energy Fuels, 2018, vol. 32, no. 6, pp. 6557–6564. https://doi.org/10.1021/acs.energyfuels.8b00664

    Article  CAS  Google Scholar 

  13. ASTM D6560-12 (IP 143) – Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products, ASTM International, 2012.

  14. ASTM D189-14 – Standard test method for Conradson carbon residue of petroleum products, ASTM International, 2014.

  15. IP 469/01-2006 Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection, Energy Institute (Institute of Petroleum), 2006.

  16. Xia, W., Xu, T., and Wang, H., J. Hazard. Mater., 2019, vol. 373, pp. 741–752. https://doi.org/10.1016/j.jhazmat.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y.-J. and Li, Z.-F., J. Chem., 2015, vol. 2015, pp. 1–8. https://doi.org/10.1155/2015/580950

    Article  CAS  Google Scholar 

  18. Michael, G., Al-Siri, M., Khan, Z.H., and Ali, F.A., Energy Fuels, 2005, vol. 19, no. 4, pp. 1598–1605. https://doi.org/10.1021/ef049854l

    Article  CAS  Google Scholar 

  19. Ali, F.A., Ghaloum, N., and Hauser, A., Energy Fuels, 2006, vol. 20, no. 1, pp. 231–238. https://doi.org/10.1021/ef050130z

    Article  CAS  Google Scholar 

  20. AlHumaidan, F.S., Hauser, A., Rana, M.S., Lababidi, H.M.S., and Behbehani, M., Fuel, 2015, vol. 150, pp. 558–564. https://doi.org/10.1016/j.fuel.2015.02.076

    Article  CAS  Google Scholar 

  21. Christopher, J., Sarpal, A.S., Kapur, G.S., Krishna, A., Tyagi, B.R., Jain, M.C., Jain, S.K., and Bhatnagar, A.K., Fuel, 1996, vol. 75, no. 8, pp. 999–1008. https://doi.org/10.1016/0016-2361(96)00023-3

    Article  CAS  Google Scholar 

  22. Yen, T.F., Erdman, J.G., and Pollack, S.S., Anal. Chem., 1961, vol. 33, no. 11, pp. 1587–1594. https://doi.org/10.1021/ac60179a039

    Article  CAS  Google Scholar 

  23. Gray, M.R., Tykwinski, R.R., Stryker, J.M., and Tan, X., Energy Fuels, 2011, vol. 25, no. 7, pp. 3125–3134. https://doi.org/10.1021/ef200654p

    Article  CAS  Google Scholar 

  24. Krayushkin, V.A., Guseva, E.E., and Morozova, R.M., Geol. Zh., 2008, no. 4, pp. 26–38.

    Google Scholar 

  25. Speight, J.G., Oil Gas Sci. Technol., 2004, vol. 59, no. 5, pp. 467–477. https://doi.org/10.2516/ogst:2004032

    Article  CAS  Google Scholar 

  26. Bansal, V., Patel, M.B., and Sarpal, A.S., Petrol. Sci. Technol., 2004, vol. 22, nos. 11–12, pp. 1401–1426. https://doi.org/10.1081/lft-200027776

    Article  CAS  Google Scholar 

  27. Zheng, C., Zhu, M., and Zhang, D., Energy Proc., 2017, vol. 105, pp. 143–148. https://doi.org/10.1016/j.egypro.2017.03.293

    Article  CAS  Google Scholar 

  28. Magomedov, R.N., Pripakhaylo, A.V., and Maryutina, T.A., Russ. J. Phys. Chem. B, 2020, vol. 14, no. 7, pp. 1098– 1102. https://doi.org/10.1134/S1990793120070131

    Article  CAS  Google Scholar 

Download references

Funding

The study described here was performed with financial support from the Russian Foundation for Basic Research (research project no. 18-29-06044 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Magomedov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 328–336 https://doi.org/10.31857/S0028242121030047.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyukova, D.I., Magomedov, R.N., Savonina, E.Y. et al. Effects of the Composition and Molecular Structure of Asphaltenes on the Properties of Heavy Petroleum Feedstock Represented by Heavy Oil from the Ashalchinskoye Field and Two Vacuum Residue Samples. Pet. Chem. 61, 438–445 (2021). https://doi.org/10.1134/S0965544121050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050108

Keywords:

Navigation