Skip to main content
Log in

Role of calcination on dielectric properties of BaTiO3 nanoparticles as a gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, the aim is to establish the correlation between the calcination temperature and dielectric properties of BaTiO3 nanoparticles including gas sensing properties. For this purpose, the BaTiO3 nanoparticles have been synthesized using the sol–gel method with low-temperature hydrolysis with varying calcination temperature and time. The structural, morphological, elemental, chemical, dielectric and gas sensing properties have been characterized using XRD, SEM, TEM, EDX, RAMAN Spectroscopy and LCR Meter with Gas Sensing Unit. The cubic phase of BaTiO3 nanoparticles has been confirmed by XRD and the estimated particle size obtained from 20.6 nm to 29.4 nm concerning the change in calcination temperature and time. The morphological study and crystal structure analysis have been performed using SEM and TEM images. Elemental identification has been done by EDX which indicates the presence of Ba, Ti and O in the synthesized compound. The formation of the cubic phase has also been confirmed by Raman analysis with a small shift in peaks toward the higher wave number side. Dielectric properties of synthesized BaTiO3 nanoparticles have been investigated as a function of frequency with temperature variation from 30 to 150 °C. The sensitivity (%) as a function of flow rate and temperature of BaTiO3 nanoparticles have been investigated and observed that BaTiO3 nanoparticles calcinated at 800 °C for 2 h achieved the highest response toward NH3 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.L. Kozlovskiy, I.E. Kenzhina, M.V. Zdorovets, M. Saiymova, D.I. Tishkevich, S.V. Trukhanov, A.V. Trukhanov, Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A= Ba, Ca, Sr). Ceram. Int. 45, 17236–17242 (2019)

    Article  Google Scholar 

  2. M.M. Vijatović, J.D. Bobić, B.D. Stojanović, History and challenges of barium titanate: Part II. Sci. Sinter. 40, 235–244 (2008)

    Article  Google Scholar 

  3. B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480–482 (2002)

    Article  Google Scholar 

  4. O.A. Harizanov, Formation and crystallization of an acetate-acetylacetonate derived sol–gel BaTiO3. Mat. Lett. 34, 345–350 (1998)

    Article  Google Scholar 

  5. L. Wu, M.C. Chure, K.K. Wu, W.C. Chang, M.J. Yang, W.K. Liu, M.J. Wu, Dielectric properties of barium titanate ceramics with different materials powder size. Ceram. Int. 35, 957–960 (2009)

    Article  Google Scholar 

  6. L.S. Seveyrat, A. Hajjaji, Y. Emziane, B. Guiffard, D. Guyomar, Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications. Ceram. Int. 33, 35–40 (2007)

    Article  Google Scholar 

  7. R. Ashiri, Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanatenanoscale particles through a newly developed process. Vib. Spect. 66, 24–29 (2013)

    Article  Google Scholar 

  8. P.P. Phule, S.H. Risbud, Sol-gel synthesis of barium titanate powders using barium acetate and titanium (IV) isopropoxide. Adv. Ceram. Mater. 3, 183–185 (1988)

    Article  Google Scholar 

  9. N.B. Mahmood, E.K. Al-Shakarchi, Three techniques used to produce BaTiO3 fine powder. J. Modern Phys. 2, 1420–1428 (2011)

    Article  ADS  Google Scholar 

  10. G.H. Jain, L.A. Patil, M.A. Wagh, D.R. Patil, S.A. Patil, Surface modified BaTiO3 thick film resistors as H2S gas sensors. Sens. Actuators B 117, 159–165 (2006)

    Article  Google Scholar 

  11. G.H. Jain, S.B. Nahire, D.D. Kajale, G.E. Patil, S.D. Shinde, D.N. Chavan, V.B. Gaikwad, Cr2O3-Doped BaTiO3 as an Ammonia Gas Sensor (Springer, Berlin, 2011).

    Book  Google Scholar 

  12. R. Ashiri, A. Nemati, M. Sasani Ghamsari, M.M. Dastgahi, Nanothickness films, nanostructured films, and nanocrystals of barium titanate obtained directly by a newly developed sol–gel synthesis pathway. J. Mater. Sci. Mater. Elect. 25, 5345–5355 (2014)

    Article  Google Scholar 

  13. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978).

    Google Scholar 

  14. W.H. Zhang, L. Chen, Y.T. Tao, J. Chen, J.X. Zhang, Raman study of barium titanate with oxygen vacancies. Phys. B: Cond. Matter 406, 4630–4633 (2011)

    Article  ADS  Google Scholar 

  15. A.V. Zanfir, G. Voicu, S.I. Jinga, E. Vasile, V. Ionita, Low-temperature synthesis of BaTiO3 nanopowders. Ceram. Int. 42, 1672–1678 (2016)

    Article  Google Scholar 

  16. H. Pawar, M. Khan, C. Mitharwal, U.K. Dwivedi, S. Mitra, D. Rathore, Co1−xBaxFe2O4 (x= 0, 0.25, 0.5, 0.75 and 1) nanoferrites as gas sensor towards NO2 and NH3 gases. RSC Adv. 10, 35265–35272 (2020)

    Article  ADS  Google Scholar 

  17. D. Rathore, R. Kurchania, R.K. Pandey, Structural, magnetic and dielectric properties of Ni1-xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles synthesized by chemical co-precipitation method. Int. J. Nanosci. Nanotech. 13, 1812–1819 (2013)

    Article  Google Scholar 

  18. D. Rathore, R. Kurchania, R.K. Pandey, Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles. Int. J. Min. Metal. Mater. 21, 408–414 (2014)

    Article  Google Scholar 

  19. M. Khan, H. Pawar, M. Kumari, C. Patra, G. Patel, U.K. Dwivedi, D. Rathore, Effect of concentration of SiC on physicochemical properties of CoFe2O4/SiC nanocomposites. J. Alloys Compd. 840, 155596 (2020)

    Article  Google Scholar 

  20. A. Hendi, AC conductivity and dielectric measurements of bulk tertracyanoquinodimethane. Aust. J. Basic Appl. Sci. 5, 380–386 (2011)

    Google Scholar 

  21. Y. Usman, G.S. Chung, Effect of surface treated MWCNTs and BaTiO3 nanoparticles on the dielectric properties of a P (VDF-TrFE) matrix. J. Alloys Compd. 695, 1231–1236 (2017)

    Article  Google Scholar 

  22. P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor. Sens. Actuators B 224, 282–289 (2016)

    Article  Google Scholar 

  23. D. Rathore, S. Mitra, R. Kurchania, R.K. Pandey, Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor. J. Mater. Sci.: Mater. Electr. 29, 1925–1932 (2018)

    Google Scholar 

  24. D. Rathore, R. Kurchania, R.K. Pandey, Gas sensing properties of size varying CoFe2O4 nanoparticles. IEEE Sens. J. 15, 4961–4966 (2015)

    Article  ADS  Google Scholar 

  25. D. Rathore, S. Mitra, MnFe2O4 as a gas sensor towards SO2 and NO2 gases. AIP Conf. Proc. 1728, 020166-1–20173 (2016)

    Google Scholar 

  26. D. Rathore, R. Kurchania, R.K. Pandey, Fabrication of Ni1−xZnxFe2O4 (x= 0, 0.5 and 1) nanoparticles gas sensor for some reducing gases. Sens. Actuators A Phys. 199, 236–240 (2013)

    Article  Google Scholar 

  27. G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to funding agencies for SERB funded Project No. EMR/2016/2156 and UGC, DAE-CSR, Indore for CRS funded Project No. CSR-IC/MSRSR-10/CRS-218/2017-18/1299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepshikha Rathore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, H., Khan, M., Kumari, M. et al. Role of calcination on dielectric properties of BaTiO3 nanoparticles as a gas sensor. Appl. Phys. A 127, 384 (2021). https://doi.org/10.1007/s00339-021-04517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04517-6

Keywords

Navigation