Skip to main content

Advertisement

Log in

Correlation of simulation and experiment for perovskite solar cells with MoS2 hybrid-HTL structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, experimental photovoltaic performance and numerical simulations are compared for perovskite solar cells devices with MoS2 hybrid hole transporting layer (HTL) structure. Experimentally, it is established that the incorporation of MoS2 with 2 mg/ml concentration effectively acts as a barrier to ion migration and minimizes the shunt contact. The optimum absorber thickness, defect density, and optimum MoS2 thickness were theoretically evaluated and discussed by modeling the electrical characteristics of the cells using SCAPS-1D software, hence, the correlation of structural and morphologic tuning can be examined. The optimum absorber thickness of 400 nm and 363 nm was shown for simulation and experimental, respectively, meanwhile, the optimum MoS2 thickness of 30 nm recorded in the simulation was agreed by an experimental thickness of 29 nm. Remarkably, the surface morphology of the perovskite layer with visible pinholes was observed and successfully concealed by the optimum MoS2 concentration. The simulated HTL structure based on the optimized parameters showed an efficiency of 11.24%, and the hybrid-HTL structure showed a significant enhancement in the efficiency by up to 14.16%. Further validation via experiment, the efficiency of 8.3% and 9.5% was obtained for the HTL and hybrid-HTL structures, respectively. Thus, the results revealed that the structural and morphologic tuning can establish a beneficial guide for the optimization and fabrication of devices from the simulation and experimental perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  2. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  ADS  Google Scholar 

  3. M.Z. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)

    Article  ADS  Google Scholar 

  4. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    Article  ADS  Google Scholar 

  5. NREL, Best Research-Cell Efficiencies: Rev. 04-06-2020. Best Res. Effic. Chart | Photovolt. Res. | NREL (2020) The website: https://www.nrel.gov/pv/cell-efficiency.html

  6. G. Adam, M. Kaltenbrunner, E.D. Głowacki, D.H. Apaydin, M.S. White, H. Heilbrunner, S. Tombe, P. Stadler, B. Ernecker, C.W. Klampfl, N.S. Sariciftci, M.C. Scharber, Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Sol. Energy Mater. Sol. Cells 157, 318–325 (2016)

    Article  Google Scholar 

  7. P. Vivo, J.K. Salunke, A. Priimagi, Hole-transporting materials for printable perovskite solar cells. Materials (Basel) 10, 1087 (2017)

    Article  Google Scholar 

  8. E. Nouri, M.R. Mohammadi, Z.X. Xu, V. Dracopoulos, P. Lianos, Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys. Chem. Chem. Phys. 20, 2388–2395 (2018)

    Article  Google Scholar 

  9. T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, B.-J. Hwang, Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016)

    Article  Google Scholar 

  10. G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, C. Ducati, In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016)

    Article  ADS  Google Scholar 

  11. E.L. Unger, E.T. Hoke, C.D. Bailie, W.H. Nguyen, A.R. Bowring, T. Heumüller, M.G. Christoforo, M.D. McGehee, Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014)

    Article  Google Scholar 

  12. S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, H.J. Snaith, Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432–437 (2015)

    Article  Google Scholar 

  13. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S. Il Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    Article  ADS  Google Scholar 

  14. Y. Shi, X. Wang, H. Zhang, B. Li, H. Lu, T. Ma, C. Hao, Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells. J. Mater. Chem. A 3, 22191–22198 (2015)

    Article  Google Scholar 

  15. C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao, B. Xu, Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 121, 6546–6553 (2017)

    Article  Google Scholar 

  16. S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, H.J. Snaith, Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432–437 (2015)

    Article  Google Scholar 

  17. E. Nouri, Y.L. Wang, Q. Chen, J.J. Xu, G. Paterakis, V. Dracopoulos, Z.X. Xu, D. Tasis, M.R. Mohammadi, P. Lianos, Introduction of graphene oxide as buffer layer in perovskite solar cells and the promotion of soluble n-butyl-substituted copper phthalocyanine as efficient hole transporting material. Electrochim. Acta 233, 36–43 (2017)

    Article  Google Scholar 

  18. P. Huang, Z. Wang, Y. Liu, K. Zhang, L. Yuan, Y. Zhou, B. Song, Y. Li, Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells. ACS Appl. Mater. Interfaces 9, 25323–25331 (2017)

    Article  Google Scholar 

  19. Y.H. Wu, X.Q. Shi, X.H. Ding, Y.K. Ren, T. Hayat, A. Alsaedi, Y. Ding, P. Xu, S.Y. Dai, Incorporating 4-tert-Butylpyridine in an antisolvent: a facile approach to obtain highly efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 10, 3602–3608 (2018)

    Article  Google Scholar 

  20. H.-Q.Q. Zhao, X. Mao, D. Zhou, S. Feng, X. Shi, Y. Ma, X. Wei, Y. Mao, Y.H. Yeung, J. Schmutzler, C. Schüller, Bandgap modulation of MoS 2 monolayer by thermal annealing and quick cooling. Nanoscale 7, 7126–7131 (2016)

    Google Scholar 

  21. N.F. Ramli, P.N.A. Fahsyar, N.A. Ludin, M.A.M. Teridi, M.A. Ibrahim, S.H. Zaidi, S. Sepeai, Compatibility between compact and mesoporous TiO2 layers on the optimization of photocurrent density in photoelectrochemical cells. Surf. Interfaces 17, 100341 (2019)

    Article  Google Scholar 

  22. N.F. Ramli, P.N.A. Fahsyar, N.A. Ludin, M.A.M. Teridi, M.A. Ibrahim, S. Sepeai, Graphene dispersion as a passivation layer for the enhancement of perovskite solar cell stability. Mater. Chem. Phys. 257, 123798 (2021)

    Article  Google Scholar 

  23. M.F. Mohamad Noh, N.A. Arzaee, I.N. Nawas Mumthas, N.A. Mohamed, S.N.F. Mohd Nasir, J. Safaei, A. R. bin M. Yusoff, M. K. Nazeeruddin, and M. A. Mat Teridi, , High-humidity processed perovskite solar cells. J. Mater. Chem. A 8, 10481–10518 (2020)

    Article  Google Scholar 

  24. K. Sobayel, M. Akhtaruzzaman, K.S. Rahman, M.T. Ferdaous, Z.A. Al-Mutairi, H.F. Alharbi, N.H. Alharthi, M.R. Karim, S. Hasmady, N. Amin, A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results Phys. 12, 1097–1103 (2019)

    Article  ADS  Google Scholar 

  25. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  ADS  Google Scholar 

  26. M.F. Mohamad Noh, N.A. Arzaee, J. Safaei, N.A. Mohamed, H.P. Kim, A.R. Mohd Yusoff, J. Jang, M.A. Mat Teridi, Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. J. Alloys Compd. 773, 997–1008 (2019)

    Article  Google Scholar 

  27. B. Chen, H. Hu, T. Salim, Y.M. Lam, A facile method to evaluate the influence of trap densities on perovskite solar cell performance. J. Mater. Chem. C 7, 5646–5651 (2019)

    Article  Google Scholar 

  28. M.W. Lin, I.I. Kravchenko, J. Fowlkes, X. Li, A.A. Puretzky, C.M. Rouleau, D.B. Geohegan, K. Xiao, Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology 27, 165203 (2016)

    Article  ADS  Google Scholar 

  29. Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan, J. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 5, 60562–60569 (2015)

    Article  ADS  Google Scholar 

  30. S. Mahjabin, M.M. Haque, K. Sobayel, M.S. Jamal, M.A. Islam, V. Selvanathan, A.K. Assaifan, H.F. Alharbi, K. Sopian, N. Amin, M. Akhtaruzzaman, Perceiving of defect tolerance in perovskite absorber layer for efficient perovskite solar cell. IEEE Access 8, 106346–106353 (2020)

    Article  Google Scholar 

  31. A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha, L. Cin, V. Pellegrini, A. Di Carlo, F. Bonaccorso, Few-Layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6, 1600920 (2016)

    Article  Google Scholar 

  32. J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)

    Article  Google Scholar 

  33. N. Marinova, W. Tress, R. Humphry-Baker, M.I. Dar, V. Bojinov, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS Nano 9, 4200–4209 (2015)

    Article  Google Scholar 

  34. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710–727 (2017)

    Article  Google Scholar 

  35. J. Troughton, K. Hooper, T.M. Watson, Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy 39, 60–68 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by of Universiti Kebangsaan Malaysia Research Grant which is Dana Impak Perdana (DIP-2019-025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norasikin Ahmad Ludin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 831 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahsyar, P.N.A., Ludin, N.A., Ramli, N.F. et al. Correlation of simulation and experiment for perovskite solar cells with MoS2 hybrid-HTL structure. Appl. Phys. A 127, 383 (2021). https://doi.org/10.1007/s00339-021-04531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04531-8

Keywords

Navigation