Skip to main content
Log in

The Constitutive Model of a Unidirectional SiC Fiber-Reinforced Titanium Matrix Composite During Spectrum Loading

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

An approach to simulate the constitutive model of a unidirectionally SiC fiber-reinforced titanium matrix composite during spectrum loading was developed in this paper. Based on the assumption that there is a microcrack in the matrix and the maximum shear stress criterion, the debonding length and the distribution of interfacial slip zone under spectrum loading were derived. The stress at a loading point was divided into four stages including crack opening section, positive slip zone, reverse slip zone, and bond zone. Based on the partial crack shear-lag model, the stress of fiber and matrix in the four stages was derived, and the constitutive model of the composite under spectrum loading was established. At last, the effects of different damages on the constitutive model and interfacial debonding zone of a unidirectionally SiC fiber-reinforced titanium matrix composite were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All date used to support the findings of this study are included within the article.

References

  1. Hayat, M.D., Singh, H., He, Z., Cao, P.: Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 121, 418–438 (2019)

    Article  CAS  Google Scholar 

  2. Shirvanimoghaddam, K., Hamim, S.U., Karbalaei Akbari, M., Fakhrhoseini, S.M., Khayyam, H., Pakseresht, A.H., Ghasali, E., Zabet, M., Munir, K.S., Jia, S., Davim, J.P., Naebe, M.: Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part A Appl. Sci. Manuf. 92, 70–96 (2017)

    Article  CAS  Google Scholar 

  3. Lino Alves, F.J., Baptista, A.M., Marques, A.T.: 3 - Metal and ceramic matrix composites in aerospace engineering. Presented at the (2016)

  4. Wang, P.C., Jeng, S.M., Yang, J.M.: Characterization and modeling of stiffness reduction in SCS-6-Ti composites under low cycle fatigue loading. Mater. Sci. Eng. A. 200, 173–180 (1995)

    Article  Google Scholar 

  5. China Aeronautical Materials Manual Committee. China Aeronautical Materials Manual. 3. Aluminum alloy, magnesium alloy and titanium alloy, (1989)

  6. Sun, Z., Sun, J., Chang, Y., Sun, W., Qi, L., Song, Y.: Axial Tensile Failure Analysis of SiCf/Ti Composite Based on Continuum Cohesive Zone Model. J. Mater. Eng. Perform. 28, 956–966 (2019)

    Article  CAS  Google Scholar 

  7. Hassanzadeh-Aghdam, M., Edalatpanah, S.A., Azaripour, S.: Interphase region effect on the biaxial yielding envelope of SiC fiber-reinforced Ti matrix composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 095440621877753 (2018).

  8. Lou, J.H., Yang, Y.Q., Luo, X., Yuan, M.N., Feng, G.H.: The analysis on transverse tensile behavior of SiC/Ti–6Al–4V composites by finite element method. Mater. Des. 31, 3949–3953 (2010)

    Article  CAS  Google Scholar 

  9. Totry, E., González, C., LLorca, J.: Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos. Sci. Technol. 68, 829–839 (2008)

  10. Yanfang, X., Tiexiong, S., Meini, Y.: Study of Interfacial Stress Distribution in SiC Fiber Reinforced Titanium Matrix Composites on Transverse Tensile Tests. J. Mater. Eng. Perform. 21, 2446–2450 (2012)

    Article  Google Scholar 

  11. Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—A micromechanical approach. Mater. Sci. Eng. A. 528, 7983–7990 (2011)

    Article  CAS  Google Scholar 

  12. Aghdam, M.M., Falahatgar, S.R., Gorji, M.: Micromechanical consideration of interface damage in fiber reinforced Ti-alloy under various combined loading conditions. Compos. Sci. Technol. 68, 3406–3411 (2008)

    Article  CAS  Google Scholar 

  13. Zhang, F., Niu, X., Chen, X., Sun, Z., Song, Y.: Simulation of tension-compression hysteresis loop of an unidirectionally SiC fiber-reinforced titanium matrix composite. Compos. Interfaces. 27, 795–813 (2020)

    Article  CAS  Google Scholar 

  14. Guanghai, F., Yanqing, Y., Jian, L., Xian, L., Bin, H., Qing, S., Chen, W., Yan, C.: Fatigue Behavior and Damage Evolution of SiC Fiberreinforced Ti-6Al-4V Alloy Matrix Composites. Rare Met. Mater. Eng. 43, 2049–2054 (2014)

    Article  Google Scholar 

  15. Bettge, D., Günther, B., Wedell, W., Portella, P.D., Hemptenmacher, J., Peters, P.W.M., Skrotzki, B.: Mechanical behavior and fatigue damage of a titanium matrix composite reinforced with continuous SiC fibers. Mater. Sci. Eng. A. 452–453, 536–544 (2007)

    Article  Google Scholar 

  16. Wang, P.C., Jeng, S.M., Yang, J.M., Mal, A.K.: Fatigue life prediction of fiber-reinforced titanium matrix composites. Acta Mater. 44, 1097–1108 (1996)

    Article  CAS  Google Scholar 

  17. Boyum, E.A., Mall, S.: Fatigue behavior of a cross-ply titanium matrix composite under tension-tension and tension-compression cycling. Mater. Sci. Eng. A. 200, 1–11 (1995)

    Article  Google Scholar 

  18. Jeng, S.M., Alassoeur, P., Yang, J.-M.: Fracture mechanisms of fiber-reinforced titanium alloy matrix composites V: Fatigue crack propagation. Mater. Sci. Eng. A. 154, 11–19 (1992)

    Article  Google Scholar 

  19. Kong, X., Wang, Y., Yang, Q., Zhang, X., Zhang, G., Yang, L., Wu, Y., Yang, R.: Low-cycle fatigue behavior and damage progression of a fiber reinforced titanium matrix composite. Int. J. Light. Mater. Manuf. 4, (2020)

  20. Sun, W., Sun, Z., Lu, Q., Chen, X., Song, Y.: Fatigue Hysteresis Loops Simulation of SiCf /Ti Composites under Two-Stage Cyclic Loading. Appl. Compos. Mater. 26, 1041–1057 (2019)

    Article  CAS  Google Scholar 

  21. Yang, J.-M., Jeng, S.M., Yang, C.J.: Fracture mechanisms of fiber-reinforced titanium alloy matrix composites Part I: Interfacial behavior. Mater. Sci. Eng. A. 138, 155–167 (1991)

    Article  Google Scholar 

  22. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  23. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids. 34, 167–189 (1986)

    Article  Google Scholar 

  24. Kuo, W., Chou, T.: Multiple Cracking of Unidirectional and Cross-PlyCeramic Matrix Composites. J. Am. Ceram. Soc. 78, (1995)

  25. Her, Y.C., Wang, P.C., Yang, J.M.: Fatigue crack initiation and multiplication of unnotched titanium matrix composites, (1998)

  26. Shojiro, O., Okumura, I., Tanaka, M., Hojo, M., Inoue, T.: Influences of residual stresses, frictional shear stress at debonded interface and interactions among broken components on interfacial debonding in unidirectional multi-filamentary composites. Compos. Interfaces - Compos INTERFACE. 5, 363–381 (1997)

    Article  Google Scholar 

  27. Mahesh, S., Mishra, A.: Strength distribution of Ti/SiC metal-matrix composites under monotonic loading. Eng. Fract. Mech. 194, 86–104 (2018)

    Article  Google Scholar 

  28. Gao, X., Fang, G., Song, Y.: Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load. Compos. Part B Eng. 56, 92–99 (2014)

    Article  CAS  Google Scholar 

  29. Solti, J.P., Robertson, D.D., Mall, S.: Estimation of interfacial properties from hysteretic energy loss in unidirectional ceramic matrix composites. Adv. Compos. Mater. 9, 161–173 (2000)

    Article  CAS  Google Scholar 

  30. Li, L.: Fatigue damage model and life prediction of long-fiber- reinforced ceramic matrix composites. Nanjing University of Aeronautics and Astronautics;Chinese, Nanjing(CN) (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China, the National Natural Science Foundation of China [grant number 51675266]; the Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant number KYCX18_0314]; the Fundamental Research Funds for the Central Universities [grant number NJ20160038]; the Jiangsu Province Key Laboratory of Aerospace Power System [grant number CEPE2019004] are gratefully acknowledged; and the Jiang Planned Projects for Postdoctoral Research Funds [grant number 2019K029].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Sun.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, Z., Niu, X. et al. The Constitutive Model of a Unidirectional SiC Fiber-Reinforced Titanium Matrix Composite During Spectrum Loading. Appl Compos Mater 28, 1019–1037 (2021). https://doi.org/10.1007/s10443-021-09881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09881-3

Keywords

Navigation