Skip to main content
Log in

Resolving Singularities and Monodromy Reduction of Fuchsian Connections

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study monodromy reduction of Fuchsian connections from a sheave theoretic viewpoint, focusing on the case when a singularity of a special connection with four singularities has been resolved. The main tool of study is based on a bundle modification technique due to Drinfeld and Oblezin. This approach via invariant spaces and eigenvalue problems allows us not only to explain Erdélyi’s classical infinite hypergeometric expansions of solutions to Heun equations, but also to obtain new expansions not found in his papers. As a consequence, a geometric proof of Takemura’s eigenvalues inclusion theorem is obtained. Finally, we observe a precise matching between the monodromy reduction criteria giving those special solutions of Heun equations and that giving classical solutions of the Painlevé VI equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Oblezin attributed his bundle construction has its origin from Drinfeld [12].

  2. The Lamé equation is an elliptic form and special case of the Heun equation where the local monodromy of three out of the four singularities are reduced, see, for example, [6], while the Mathieu equation is a trigonometric form of a special confluent Heun equation.

References

  1. Barkatou, M.A., Maddah, S.S.: Removing apparent singularities of systems of linear differential equations with rational function coefficients. In: ISSAC’15—Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation, pp. 53–60. ACM, New York (2015)

  2. Beukers, F.: Gauss’ hypergeometric function. In: Arithmetic and geometry around hypergeometric functions, volume 260 of Progr. Math., pp. 23–42. Birkhäuser, Basel (2007)

  3. Borcea, J., Shapiro, B.: Root asymptotics of spectral polynomials for the Lamé operator. Comm. Math. Phys. 282(2), 323–337 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, S., Kauers, M., Li, Z., Zhang, Y.: Apparent singularities of D-finite systems. J. Symbolic Comput. 95, 217–237 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chiang, Y.M., Ching, A., Tsang, C.Y.: Solutions of Darboux equations, its degeneration and Painlevé VI equations (arxiv:1901.03102)

  6. Chiang, Y.M., Ching, A., Tsang, C.Y.: Symmetries of the Darboux equation. Kumamoto J. Math. 31, 15–48 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Chudnovsky, D.V., Chudnovsky, G.V.: Transcendental methods and theta-functions. In: Theta functions—Bowdoin 1987, Part 2 (Brunswick, ME, 1987), volume 49 of Proc. Sympos. Pure Math., pages 167–232. Amer. Math. Soc., Providence, RI (1989)

  8. Craster, R.V.: Conformal mappings involving curvilinear quadrangles. IMA J. Appl. Math. 57(2), 181–191 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Craster, R.V.: The solution of a class of free boundary problems. Proc. Roy. Soc. London Ser. A 453(1958), 607–630 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. Craster, R.V., Hoàng, V.H.: Applications of Fuchsian differential equations to free boundary problems. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1972), 1241–1252 (1998)

  11. Deligne, P.: Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer-Verlag, Berlin-New York (1970)

    Book  Google Scholar 

  12. Drinfeld, V.G.: Two-dimensional \(l\)-adic representations of the fundamental group of a curve over a finite field and automorphic forms on \({\rm GL}(2)\). Am. J. Math. 105(1), 85–114 (1983)

    Article  MathSciNet  Google Scholar 

  13. Duval, A., Loday-Richaud, M.: Kovačič’s algorithm and its application to some families of special functions. Appl. Algebra Engrg. Comm. Comput. 3(3), 211–246 (1992)

    Article  MathSciNet  Google Scholar 

  14. Erdélyi, A.: The Fuchsian equation of second order with four singularities. Duke Math. J. 9, 48–58 (1942)

    Article  MathSciNet  Google Scholar 

  15. Erdélyi, A.: Certain expansions of solutions of the Heun equation. Quart. J. Math., Oxford Ser. 15, 62–69 (1944)

  16. Felder, G., Willwacher, T.: Jointly orthogonal polynomials. J. Lond. Math. Soc. (2) 91(3), 750–768 (2015)

  17. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9, 24–82 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gromak, V.I., Laine, I., Shimomura, S.: Painlevé differential equations in the complex plane. De Gruyter Studies in Mathematics, vol. 28. Walter de Gruyter & Co., Berlin (2002)

  19. Hautot, A.: Sur des combinaisons linéaires d’un nombre fini de fonctions transcendantes comme solutions d’équations différentielles du second ordre. Bull. Soc. Roy. Sci. Liège 40, 13–23 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé. Aspects of Mathematics, E16. Friedr. Vieweg & Sohn, Braunschweig, 1991. A modern theory of special functions

  21. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2(3), 407–448 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Katz, N.M.: Rigid local systems. Annals of Mathematics Studies, vol. 139. Princeton University Press, Princeton, NJ (1996)

  23. Kimura, T.: On Riemann’s equations which are solvable by quadratures. Funkcial. Ekvac., 12, 269–281, (1969/1970)

  24. Kimura, T.: On Fuchsian differential equations reducible to hypergeometric equations by linear transformations. Funkcial. Ekvac., 13, 213–232, (1970/71)

  25. Mahoux, G.: Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients. In: The Painlevé property, CRM Ser. Math. Phys., pages 35–76. Springer, New York, (1999)

  26. Maier, R.S.: The 192 solutions of the Heun equation. Math. Comp. 76(258), 811–843 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Maier, R.S.: \(P\)-symbols, Heun identities, and \({}_3F_2\) identities. Contemp. Math. 471, 139–159 (2008)

    Article  Google Scholar 

  28. Malgrange, B.: Regular connections, after Deligne. Algebraic \(D\)-modules, vol. 2. Perspectives in Mathematics. Academic Press Inc, Boston, MA (1987)

  29. Oblezin, S.V.: Discrete symmetries of systems of isomonodromic deformations of second-order differential equations of Fuchsian type. Funct. Anal. Appl. 38(2), 111–124 (2004)

    Article  MathSciNet  Google Scholar 

  30. Oblezin, S.V.: Isomonodromic deformations of \(\mathfrak{sl}{(2)}\) Fuchsian systems on the Riemann sphere. Mosc. Math. J., 5(2), 415–441, 494–495, (2005)

  31. Okamoto, K.: Studies on the Painlevé equations. I. Sixth Painlevé equation \(P_{{\rm VI}}\). Ann. Mat. Pura Appl. (4) 146, 337–381 (1987)

  32. Poole, E.G.C.: Introduction to the Theory of Linear Differential Equations. Dover Publications Inc, New York (1960)

    MATH  Google Scholar 

  33. Roncaratti, L.F., Aquilanti, V.: Whittaker-Hill equation, Ince polynomials, and molecular torsional modes. Int. J. Quantum Chem. 110, 716–130 (2010)

    Article  ADS  Google Scholar 

  34. Ronveaux, A.: editor. Heun’s Differential Equations. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1995. With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval

  35. Shanin, A.V., Craster, R.V.: Removing false singular points as a method of solving ordinary differential equations. European J. Appl. Math. 13(6), 617–639 (2002)

    Article  MathSciNet  Google Scholar 

  36. Shiga, H., Tsutsui, T., Wolfart, J.: Triangle Fuchsian differential equations with apparent singularities. Osaka J. Math., 41(3), 625–658, (2004). With an appendix by Paula B. Cohen

  37. Takemura, K.: Analytic continuation of eigenvalues of the Lamé operator. J. Differ. Equ. 228(1), 1–16 (2006)

    Article  ADS  Google Scholar 

  38. Takemura, K.: Middle convolution and Heun’s equation. SIGMA Symmetry Integrability Geom. Methods Appl., 5:040, 22 pages, (2009)

  39. Takemura, K.: Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial. J. Phys. A, 45(8), 085211, 14, (2012)

  40. Van Assche, W.: Orthogonal polynomials and Painlevé equations. Australian Mathematical Society Lecture Series, vol. 27. Cambridge University Press, Cambridge (2018)

  41. Watson, G.N.: Asymptotic expansions of hypergeometric functions. Trans. Cambridge Philos. Soc. 22, 277–308 (1918)

    Google Scholar 

  42. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  43. Yoshida, M.: From the power function to the hypergeometric function. In: Arithmetic and geometry around hypergeometric functions, volume 260 of Progr. Math., pages 407–429. Birkhäuser, Basel (2007)

Download references

Acknowledgements

The authors would like to express their gratitude towards the referee for his/her critical comments that, amongst others, cleared up some ambiguities of our original manuscript.

Funding

The first and the third authors were partially supported by the Research Grants Council of Hong Kong (No. 16300814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yik-Man Chiang.

Additional information

Communicated by Nikolai Kitanine.

Dedicated to the memory of Richard A. Askey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Fuchsian Relations

We point out that there is a difference between the Fuchsian relation of a Fuchsian connection and a Fuchsian differential equation [2] that is derived from the Fuchsian connection. Since we cannot find a reference for this fact, a proof is provided here.

Let a connection \(\nabla \) relative to the canonical basis have the matrix representation

$$\begin{aligned} -\sum _{j=1}^{n} \frac{A_j}{x-a_j}:=-A(x) =\left( \begin{matrix} A_{11} &{} A_{12}\\ A_{21} &{} A_{22} \end{matrix} \right) \end{aligned}$$
(A.1)

such that \(a_{n+1}=\infty \) and that the residue matrices \(A_j\ (j=1,\cdots , n+1)\) satisfy the Fuchsian relation:

$$\begin{aligned} \sum _{j=1}^{n+1} {{\,\mathrm{Tr}\,}}(A_j)=0. \end{aligned}$$
(A.2)

Lemma A.1

Let \({{\,\mathrm{Tr}\,}}(A_j)=\alpha _{j1}+\alpha _{j2}\) be the trace of the residue matrix \(A_j\ (j=1,\cdots n+1)\). Let y be the first component of a horizontal section of the connection defined above. Let the Riemann scheme of the differential equation

$$\begin{aligned} y^{\prime \prime }-\big ({{\,\mathrm{Tr}\,}}\big (A(x)\big )+\frac{A^\prime _{12}(x)}{A_{12}(x)}\big )y^\prime +\Big (\det A(x)-A_{11}(x)\log ^\prime \big (A_{12}(x)/A_{11}(x)\big )\Big )y=0 \end{aligned}$$
(A.3)

derived from the connection above and satisfied by y be of the form

$$\begin{aligned} P \left( \begin{matrix} a_1 &{} \cdots &{}a_j &{}\cdots &{} a_n &{} \infty &{}b_1 &{} \cdots &{}b_{n-1} \\ \beta _{11} &{} \cdots &{}\beta _{j1} &{} \cdots &{} \beta _{n1} &{}\beta _{n+1,\, 1} &{} 0 &{} \cdots &{} 0\\ \beta _{22} &{} \cdots &{}\beta _{j2} &{} \cdots &{} \beta _{n2} &{}\beta _{n+1,\, 2} &{} 2 &{} \cdots &{} 2 \end{matrix} ;\ x \right) , \end{aligned}$$

where \(b_j\ (j=1,\cdots , n-1)\) are the apparent singularities. If \(b_j=a_j\ (j=1,\cdots , n-1)\), then we have

$$\begin{aligned} \begin{aligned}&\alpha _{j1}+\alpha _{j2} =\beta _{j1}+\beta _{j2}-1\quad (j=1,\cdots , n-1)\\&\alpha _{n1}+\alpha _{n2} =\beta _{n1}+\beta _{n2},\\&\alpha _{n+1,\, 1}+\alpha _{n+1,\, 2} =\beta _{n+1,\, 1} +\beta _{n+1,\, 2}. \end{aligned} \end{aligned}$$
(A.4)

In particular,

$$\begin{aligned} \sum _{j=1}^{n+1} (\beta _{j1}+\beta _{j2})=(n-1)+\sum _{j=1}^{n+1} {{\,\mathrm{Tr}\,}}(A_j). \end{aligned}$$

Proof

It is sufficient to compute the coefficient of \(y^\prime \). Let

$$\begin{aligned} A_{12}(x)=:\mathrm {(const.)} \frac{\prod _{j=1}^{n-1}(x-b_j)}{\prod _{j=1}^n(x-a_j)}. \end{aligned}$$

Hence

$$\begin{aligned} -{{\,\mathrm{Tr}\,}}\big (A(x)\big )-\frac{A^\prime _{12}(x)}{A_{12}(x)} =\sum _{j=1}^n \frac{1-\alpha _{j1}-\alpha _{j2}}{x-a_j} -\sum _{j=1}^{n-1}\frac{1}{x-b_j} \end{aligned}$$
(A.5)

where the \(b_j\ (j=1,\cdots , n-1)\) are apparent singularities which are inherited from \(A^\prime _{12}/A_{12}\) and they do not contribute to the monodromy of the equation (A.3). Let us now assume \(b_j=a_j\ (j=1,\cdots , n)\). Hence,

$$\begin{aligned} \begin{aligned} -{{\,\mathrm{Tr}\,}}\big (A(x)\big )-\frac{A^\prime _{12}(x)}{A_{12}(x)}&=\sum _{j=1}^{n-1} \frac{-\alpha _{j1}-\alpha _{j2}}{x-a_j}+\frac{1-\alpha _{n1}-\alpha _{n2}}{x-a_n} \\&=\sum _{j=1}^{n-1} \frac{1-\beta _{j1}-\beta _{j2}}{x-a_j}+\frac{1-\beta _{n1}-\beta _{n2}}{x-a_n}, \end{aligned} \end{aligned}$$

where we have identified \(\alpha _{j1}+\alpha _{j2}=\beta _{j1}+\beta _{j2}-1\ (j=1,\cdots , n-1)\), \(\alpha _{n1}+\alpha _{n2}=\beta _{n1}+\beta _{n2}\) and \(\alpha _{n+1,\, 1}+\alpha _{n+1,\, 2} =\beta _{n+1,\, 1} +\beta _{n+1,\, 2}\). Thus, the sum of the indicial roots of the Riemann scheme P above yields

$$\begin{aligned} \begin{aligned} \sum _{j=1}^{n+1} (\beta _{j1}+\beta _{j2})&=\sum _{j=1}^{n-1} (\beta _{j1}+\beta _{j2}) +(\beta _{n1}+\beta _{n2}) +(\beta _{n+1,\, 1}+\beta _{n+1,\, 2})\\&= n-1+\sum _{j=1}^{n-1} (\alpha _{j1}+\alpha _{j2}) +(\alpha _{n1}+\alpha _{n2}) +(\alpha _{n+1,\, 1}+\alpha _{n+1,\, 2})\\&=n-1+\sum _{j=1}^{n+1} {{\,\mathrm{Tr}\,}}(A_j). \end{aligned} \end{aligned}$$

\(\square \)

Remark A.2

It is clear that one can also include \(\infty \) as one of the apparent singular points in the above theorem. We show below an example in terms of a hypergeometric equation where the apparent singularity is placed at infinity.

Example A.3

Consider \(Y(x)=\begin{bmatrix}y_1(x)\\ y_2(x)\end{bmatrix}\) satisfying the following \(2\times 2\) Fuchsian system

$$\begin{aligned} \frac{dY}{dx}-\left[ \dfrac{A_0}{x}+\dfrac{A_1}{x-1}\right] Y=0, \end{aligned}$$
(A.6)

corresponding to the connection of hypergeometric type (\(A_0,A_1\)), where \(A_0=\begin{bmatrix}u_0+\gamma &{}1\\ -u_0(u_0+\gamma )&{}-u_0\end{bmatrix}\), \(A_1=\begin{bmatrix}u_1+\delta &{}-1\\ u_1(u_1+\delta )&{}-u_1\end{bmatrix}\), \(u_0=\frac{\alpha (\alpha +\gamma )}{\alpha -\beta }\), \(u_1=\frac{\alpha (\alpha +\delta )}{\alpha -\beta }\) such that

$$\begin{aligned}A_\infty =-A_0-A_1 =\begin{bmatrix}\beta &{}0\\ 0&{}\alpha \end{bmatrix}, \text{ where } \alpha +\beta =\gamma +\delta ,\end{aligned}$$

then \(y_1(x)\) satisfies

$$\begin{aligned} \frac{d^2y}{dx^2}+ \Big (\frac{1-\gamma }{x}+\frac{1-\delta }{x-1}\Big )\frac{dy}{dx}+ \frac{\beta (\alpha +1)}{x(x-1)}y=0. \end{aligned}$$
(A.7)

and \(y_2(x)\) satisfies

$$\begin{aligned} \frac{d^2y}{dx^2}+ \Big (\frac{1-\gamma }{x}+\frac{1-\delta }{x-1}\Big )\frac{dy}{dx}+ \frac{\alpha (\beta +1)}{x(x-1)}y=0. \end{aligned}$$
(A.8)

Two linearly independent local solutions are identified as: \(\begin{bmatrix}y_1&y_2\end{bmatrix}^T\) and \(\begin{bmatrix}\tilde{y_1}&\tilde{y_2}\end{bmatrix}^T\), where

and

Appendix B. Convergence of Erdélyi’s Expansions

The Heun function can be expanded as

(B.1)

whose coefficients \(X_m\) satisfy a three-term recursion relation

$$\begin{aligned} {\left\{ \begin{array}{ll} L_0X_0+M_0X_1=0\\ K_mX_{m-1}+L_mX_m+M_mX_{m+1}&{}=0,\ m=1,2,\cdots \end{array}\right. }, \end{aligned}$$
(B.2)

where \(K_m,L_m,M_m\) are given in [14, (5.3)]

$$\begin{aligned} \begin{aligned} K_{m+1}&:=a\frac{(\alpha +m)(\beta +m)(\varepsilon +m)(\alpha +\beta -\delta +m)}{(\alpha +\beta -\delta +2m)(\alpha +\beta -\delta +2m+1)}\\ L_m\&:=am(\gamma +m-1) \Big \{\frac{(\alpha +m)(\alpha -\delta +m+1)+(\beta +m)(\beta -\delta +m+1)}{(\alpha +\beta -\delta +2m-1)(\alpha +\beta -\delta +2m+1)}\\&\quad - \frac{1}{\alpha +\beta -\delta +2m-1}\Big \}- m(\alpha +\beta -\delta +m)-\alpha \beta q\\&\quad +a\frac{\alpha \beta (\gamma +2m)-\varepsilon m (\delta -m-1)}{\alpha +\beta -\delta +2m+1)}\\ M_{m-1}&:= \frac{am(\alpha -\delta +m)(\beta -\delta +m)(\gamma +m-1)}{(\alpha +\beta -\delta +2m-1)(\alpha +\beta -\delta +2m)}. \end{aligned} \end{aligned}$$

The convergence of the above series is given by

Theorem B.1

([14]) Suppose that the series (B.1) is non-terminating, and the branch of the square root is chosen such that its real part is nonnegative. Let \(k=\bigg |\frac{1-\sqrt{1-a}}{1+\sqrt{1-a}}\bigg |\ne 1\). Then, it converges uniformly compacta on

$$\begin{aligned} \Omega _0=\Big \{x\in {\mathbb {C}}:\bigg |\frac{1-\sqrt{1-x}}{1+\sqrt{1-x}}\bigg |<\min (k,k^{-1})\Big \}, \end{aligned}$$
(B.3)

where \(\Omega _0\) denotes a neighbourhood of 0 but excluding \(x=1\) (see the remark below). Moreover, if the accessory parameter q in (1.4) satisfies the infinite continued fraction

$$\begin{aligned} L_0/M_0-\frac{K_1/M_1}{L_1/M_1-}\frac{K_2/M_2}{L_2/M_2-}\frac{K_3/M_3}{L_3/M_3-}\cdots =0, \end{aligned}$$
(B.4)

which contains q implicitly, then the series (B.1) converges in a larger region

$$\begin{aligned} \Omega _1=\Big \{x\in {\mathbb {C}}:\bigg |\frac{1-\sqrt{1-x}}{1+\sqrt{1-x}}\bigg |<\max (k,k^{-1})\Big \} \end{aligned}$$
(B.5)

except possibly on the branch cut \([1, +\infty ).\)

We include a brief proof since the argument may not be easily found in modern literature.

Proof

We apply Poincaré’s theorem and Perron’s theorem to the three-term recurrence relation (B.2), see, for example, [17, Theorems 1.1, 2.1-2.2] to yield,

$$\begin{aligned} \lim _{m\rightarrow \infty }\left| \frac{X_{m+1}}{X_{m}}\right| = {\left\{ \begin{array}{ll} \min (k,k^{-1}) &{}\text{ if } (B.4) \text{ holds }\\ \max (k,k^{-1}) &{}\text{ otherwise } \end{array}\right. }.\end{aligned}$$

After applying Watson’s asymptotic representation (see [41, §9]), we derive

$$\begin{aligned} \frac{\varphi _{m+1}^1(x)}{\varphi _{m}^1(x)}\sim \frac{1-\sqrt{1-x}}{1+\sqrt{1-x}}\ \text{ as } m\rightarrow \infty \end{aligned}$$
(B.6)

(see [14, (4.7)]). Thus, the result follows from the ratio test applied to the cases \(\Omega _0\) and \(\Omega _1\) separately. \(\square \)

Remark B.2

(Description of \(\Omega _0\) and \(\Omega _1\)). Note that for \(m>0\), \(\big |\frac{1-y}{1+y}\big |=m\) is equivalent to the circle equation

$$\begin{aligned}|y-y_0|=r, \text{ where } y_0=\frac{1+m^2}{1-m^2} \text{ and } r=\frac{2m}{|1-m^2|}. \end{aligned}$$

Let \(m_0:=\min (k,k^{-1})<1\) and \(m_1:=\max (k,k^{-1})>1\). Then,

$$\begin{aligned} \Big \{y\in {\mathbb {C}}:\bigg |\frac{1-y}{1+y}\bigg |<m_0\Big \} \end{aligned}$$

is the open disk \(D_0\) centred at \(y_0=\frac{1+m_0^2}{1-m_0^2}>0\) with radius \(r=\frac{2m_0}{1-m_0^2}\) containing \(y=1\). In particular, \(D_0\) is contained in the half-plane \(\{\text{ Re } y>0\}\). Since \(\text{ Re }\sqrt{1-x}\) is always taken to be nonnegative, \(\Omega _0\) is a neighbourhood of 0, not containing \(x=1,\infty \). On the other hand,

$$\begin{aligned} \Big \{y\in {\mathbb {C}}:\bigg |\frac{1-y}{1+y}\bigg |<m_1\Big \} \end{aligned}$$

is the complement of the closed disk \(D_1\) centred at \(y_0=-\frac{m_1^2+1}{m_1^2-1}<0\) with radius \(r=\frac{2m_1}{m_1^2-1}\). In particular, the complement contains the half-plane \(\{\text{ Re } y\ge 0\}\). Since \(\text{ Re }\sqrt{1-x}\) is always taken to be nonnegative, \(\Omega _1={\mathbb {C}}\backslash [1,\, \infty )\).

Remark B.3

(A second linearly independent series solution). Erdélyi also considered the series solution \(\displaystyle \sum \nolimits _{m=0}^\infty X_m\varphi _m\) other than (B.1) by replacing \(\varphi _m^1\) with another linearly independent solution \(\varphi _m\), which can be any linear combination of \(\varphi _m^2,\cdots ,\varphi _m^6\) defined in [14, Eqn(4.2)]. In this case, we have the following asymptotic representation (see [14, Eqn(4.8)]) instead of (B.6)

$$\begin{aligned} \frac{\varphi _{m+1}(x)}{\varphi _{m}(x)}\sim \frac{1+\sqrt{1-x}}{1-\sqrt{1-x}}\ \text{ as } m\rightarrow \infty . \end{aligned}$$

In order to study the domain of convergence, we consider

$$\begin{aligned} \Omega _0^-=\Big \{x\in {\mathbb {C}}:\bigg |\frac{1+\sqrt{1-x}}{1-\sqrt{1-x}}\bigg |<m_0\Big \} \text{ and } \Omega _1^-=\Big \{x\in {\mathbb {C}}:\bigg |\frac{1+\sqrt{1-x}}{1-\sqrt{1-x}}\bigg |<m_1\Big \}. \end{aligned}$$

Note that

$$\begin{aligned} \Big \{y\in {\mathbb {C}}:\bigg |\frac{1+y}{1-y}\bigg |<m_0\Big \} \end{aligned}$$

is the open disk \(D_0^-\) centred at \(y_0=-\frac{1+m_0^2}{1-m_0^2}<0\) with radius \(r=\frac{2m_0}{1-m_0^2}\) containing \(y=-1\), and

$$\begin{aligned} \Big \{y\in {\mathbb {C}}:\bigg |\frac{1+y}{1-y}\bigg |<m_1\Big \} \end{aligned}$$

is the complement of the closed disk \(D_1^-\) centred at \(y_0=\frac{m_1^2+1}{m_1^2-1}>0\) with radius \(r=\frac{2m_1}{m_1^2-1}\). In particular, \(D_0^-\) is contained in the half-plane \(\{\text{ Re } y<0\}\), and \(D_1^-\subseteq \{\text{ Re } y>0\}\) contains \(y=1\), but not \(y=0,\, \infty \). Since \(\text{ Re }\sqrt{1-x}\) is always taken to be nonnegative, \(\Omega _0^-=\emptyset \) and \(\Omega _1^-\) is the domain containing \(x=1,\infty \), but not \(x=0\). As the coefficients \(X_m\) satisfy the same three-term recurrence relation (B.2), by the similar argument in the proof of Theorem B.1, the series

$$\begin{aligned} {\left\{ \begin{array}{ll} \text{ converges } \text{ on } \Omega _1^- &{}\text{ if } (B.4) \text{ holds }\\ \text{ diverges } &{}\text{ otherwise }. \end{array}\right. } \end{aligned}$$

We conclude that the two series \(\sum _{m=0}^\infty X_m\varphi _m^1(x)\) and \(\sum _{m=0}^\infty X_m\varphi _m\) both converge in \(\Omega _1^-\) when (B.4) holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, YM., Ching, A. & Tsang, CY. Resolving Singularities and Monodromy Reduction of Fuchsian Connections. Ann. Henri Poincaré 22, 3051–3094 (2021). https://doi.org/10.1007/s00023-021-01049-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01049-w

Mathematics Subject Classification

Navigation