Skip to main content
Log in

Nonlinear analysis of RC members subjected to combined bending–shear–torsion stresses: a numerical multi-fiber displacement-based finite element model with warping

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An enhanced multi-fiber beam–column element suitable for the analysis of reinforced concrete members including the torsional effect is presented in this paper. The model is developed based on displacement formulation with the assumptions of small displacement. The section kinematics is based on the assumptions of a two-node Timoshenko beam and enhanced by introducing additional degrees of freedom at each section in order to take into account the warping phenomenon. For this, a system of fixed points is created and interpolated by Lagrange functions and polynomials. To take into account the effect of stirrups, a discretization of control sections into regions following its material response is applied. The basic assumption of the modified compression field theory with a secant-stiffness formulation is used to represent the constitutive material model for reinforced concrete. The model is validated by comparison with analytical solutions and several experimental tests. The simulations include a variety of monotonic load conditions under bending, shear and torsion for specimens with rectangular sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Raush, E.: Design of reinforced concrete in torsion. Ph.D. Thesis, Technische Hochschule, Berlin, Germany (1929)

  2. A.C. 318, Building code requirements for reinforced concrete (ACI 318-71), Detroit, Mich.: American Concrete Institute, Index (1971)

  3. Lampert, P., Thürlimann, B.: Ultimate strength and design of reinforced concrete beams in torsion and bending. IABSE Publ 31(3), 645–655 (1971)

    Google Scholar 

  4. Elfgren, L.: Reinforced concrete beams loaded in combined torsion, bending and shear: a study of the ultimate load-carrying capacity. Ph.D. Thesis, Chalmers University of Technology, Goteborg (1971)

  5. Vecchio, F.J., Collins, M.P.: The modified compression-field theory for reinforced concrete elements subjected to shear. J. Am. Concrete Inst. 83, 219–231 (1986)

    Google Scholar 

  6. Foster, S., Gilbert, R.: The design of nonflexural members with normal and high-strength concretes. ACI Struct. J. 93, 3–10 (1996)

    Google Scholar 

  7. Valipour, H., Foster, S.: Nonlinear reinforced concrete frame element with torsion. Eng. Struct. Eng. Struct. 32, 988–1002 (2010)

    Article  Google Scholar 

  8. Scordelis, A.C.: Computer models for nonlinear analysis of reinforced and prestressed concrete structures. PCI J. 29, 116–135 (1984)

    Article  Google Scholar 

  9. Taucer, F.F., Spacone, E., Filippou, F.C.: A fiber beam–column element for seismic response analysis of reinforced concrete structures. Tech. Rep., Earthquake Engineering Research Center, University of California, Berkeley (1991)

  10. Spacone, E., Filippo, F., Taucer, F.: Fiber beam–column model for non-linear analysis of R/C frames: Part 1. Formulation. Earthq. Eng. Struct. Dyn. 25(7), 711–725 (1996)

    Article  Google Scholar 

  11. Vecchio, F.J., Collins, M.P.: Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory. ACI Struct. J. 85, 258–268 (1988)

    Google Scholar 

  12. Bentz, E.C.: Sectional analysis of reinforced concrete members. Ph.D. Thesis, University of Toronto, Toronto, Canada (2000)

  13. Saritas, A., Filippou, F.: A beam finite element for shear critical RC beams. ACI Special Publication SP-237-19 295–310 (2006)

  14. Mazars, J., Kotronis, P., Ragueneau, F., Casaux, G.: Using multifiber beams to account for shear and torsion: applications to concrete structural elements. Comput. Methods Appl. Mech. Eng. 195, 7264–7281 (2006)

    Article  Google Scholar 

  15. Kagermanov, A., Ceresa, P.: 3D fiber-based frame element with multiaxial stress interaction for RC structures. Adv. Civ. Eng. 2018, 1–13 (2018)

    Article  Google Scholar 

  16. Rahal, K., Collins, M.P.: Effect of thickness of concrete cover on shear–torsion interaction—an experimental investigation. ACI Struct. J. 92, 334–342 (1995)

    Google Scholar 

  17. Rahal, K.: Combined torsion and bending in reinforced and prestressed concrete beams using simplified method for combined stress-resultants. ACI Struct. J. 104, 402–411 (2007)

    Google Scholar 

  18. Navarro-Gregori, J., Miguel Sosa, P., Fernandez, M., Filippou, F.: A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading. Eng. Struct. 29, 3404–3419 (2007)

    Article  Google Scholar 

  19. Bairán, J., Mari, A.: Multiaxial-coupled analysis of RC cross-sections subjected to combined forces. Eng. Struct. 29, 1722–1738 (2007)

    Article  Google Scholar 

  20. Capdevielle, S., Grange, S., Dufour, F., Desprez, C.: A multifiber beam model coupling torsional warping and damage for reinforced concrete structures. Eur. J. Environ. Civ. Eng. 20, 1–22 (2015)

    Google Scholar 

  21. Addessi, D., Di Re, P.: A 3D mixed frame element with multi-axial coupling for thin-walled structures with damage. Frattura Integr. Strut. 8, 178–195 (2014)

    Article  Google Scholar 

  22. Di Re, P., Addessi, D.: A mixed 3D corotational beam with cross-section warping for the analysis of damaging structures under large displacements. Meccanica 53, 1313–1332 (2018)

    Article  MathSciNet  Google Scholar 

  23. Bairan, J.M.: A non-linear coupled model for the analysis of reinforced concrete sections under bending, shear, torsion and axial forces. Ph.D. Thesis, Universitat Politécnica de Catalunya, España, Departament d’Enginyeria de la Construcción (2005)

  24. Le Corvec, V.: Nonlinear 3D frame element with multi-axial coupling under consideration of local effects. Ph.D. Thesis, University of California, Berkeley (2012)

  25. Martinelli, E., Nguyen, Q.-H., Hjiaj, M.: Dimensionless formulation and comparative study of analytical models for composite beams in partial interaction. J. Constr. Steel Res. 75, 21–31 (2012)

    Article  Google Scholar 

  26. Friedman, Z., Kosmatka, J.: An improved two-node Timoshenko beam finite element. Comput. Struct. 47, 473–481 (1993)

    Article  Google Scholar 

  27. Saint-Venant, J.B.D.: Mémoire sur la torsion des prismes, Mémoires des savants étrangers

  28. Vlasov, V.: Thin Walled Elastic Beams. Fizmatgiz, Moscow (1959)

    Google Scholar 

  29. Gay, D., Boudet, R.: A technical theory of dynamical torsion for beams of any cross-section shapes. J. Mech. Des. 102, 627–632 (1980)

    Google Scholar 

  30. Xu, R., Jiansheng, H., Chen, W.: Saint-Venant torsion of orthotropic bars with inhomogeneous rectangular cross section. Compos. Struct. 92, 1449–1457 (2010)

    Article  Google Scholar 

  31. Capdevielle, S.: Introduction du gauchissement dans les éléments finis multifibres pour la modélisation non linéaire des structures en béton armé, Ph.D. thesis, Université de Grenoble Alpes (2016)

  32. Vecchio, F.J., Selby, R.G.: Toward compression-field analysis of reinforced concrete solids. J. Struct. Eng. ASCE 117, 1740–1758 (1991)

    Article  Google Scholar 

  33. Nguyen, T.-A., Nguyen, Q.-H., Somja, H.: An enhanced finite element model for reinforced concrete members under torsion with consistent material parameters. Finite Element Anal. Des. 167, 103323 (2019)

    Article  MathSciNet  Google Scholar 

  34. McMullen, A.E., Warwaruk, J.: The torsional strength of rectangular reinforced beams subjected to combined loading. Technical Report, Report No. 2, Civil Engineering Department, University of Alberta, Alberta, Canada (1967)

  35. Onsongo, W.M.: The diagonal compression field theory for reinforced concrete beams subjected to combined torsion, flexure and axial load. Ph.D. Thesis, University of Toronto, Toronto (1978)

  36. RDM Ossatures Manuel d’utilisation, Institut Universitaire de Technologie du Mans

  37. Lessig, N.N.: Determination of load-carrying capacity of rectangular reinforced concrete elements subjected to flexure and torsion, Study No. 5, Technical Report, Institut Betona i Zhelezobetona, Moscow (1959)

  38. Collins, M.P., Walsh, P.F., Archer, F.E., Hall, A.S.: Reinforced concrete beams subjected to combined torsion, bending and shear. Technical Report, UNICIV Report, No. R-14, University of New South Wales (1965)

  39. Hsu, T.T.C.: Torsion of Reinforced Concrete. Van Nostrand Reinhold, New York (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang-Huy Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Shape functions in two-node Timoshenko beam element

Shape functions for displacement vector:

$$\begin{aligned} N_1&= 1- \dfrac{x}{L}; \qquad N_2 = \dfrac{x}{L}, \\ N_{3y/z}&= \dfrac{1}{1 + \phi _{y/z}} \left[ 2 \left( \dfrac{x}{L} \right) ^3 - 3 \left( \dfrac{x}{L} \right) ^2 - \phi _{y/z} \dfrac{x}{L} + 1 + \phi _{y/z} \right] , \\ N_{4y/z}&= \dfrac{L}{1 + \phi _{y/z}} \left[ \left( \dfrac{x}{L} \right) ^3 - \left( 2 + \dfrac{\phi _{y/z}}{2} \right) \left( \dfrac{x}{L} \right) ^2 + \left( 1 + \dfrac{\phi _{y/z}}{2} \right) \dfrac{x}{L} \right] , \\ N_{5y/z}&= -\dfrac{1}{1 + \phi _{y/z}} \left[ 2 \left( \dfrac{x}{L} \right) ^3 - 3 \left( \dfrac{x}{L} \right) ^2 - \phi _{y/z} \dfrac{x}{L} \right] ,\\ N_{6y/z}&= \dfrac{L}{1 + \phi _{y/z}} \left[ \left( \dfrac{x}{L} \right) ^3 - \left( 1 - \dfrac{\phi _{y/z}}{2} \right) \left( \dfrac{x}{L} \right) ^2 - \dfrac{\phi _{y/z}}{2} \dfrac{x}{L} \right] ,\\ N_{7y/z}&= \dfrac{6}{\left( 1 + \phi _{y/z}\right) L} \left[ \left( \dfrac{x}{L} \right) ^2 - \dfrac{x}{L} \right] , \\ N_{8y/z}&= \dfrac{1}{1 + \phi _{y/z}} \left[ 3 \left( \dfrac{x}{L} \right) ^2 - \left( 4 + \phi _{y/z} \right) \dfrac{x}{L} + 1 + \phi _{y/z} \right] , \\ N_{9y/z}&= - \dfrac{6}{\left( 1 + \phi _{y/z}\right) L} \left[ \left( \dfrac{x}{L} \right) ^2 - \dfrac{x}{L} \right] , \\ N_{10y/z}&= \dfrac{1}{1 + \phi _{y/z}} \left[ 3 \left( \dfrac{x}{L} \right) ^2 - \left( 2 - \phi _{y/z} \right) \dfrac{x}{L} \right] \end{aligned}$$

with \(\phi _{y/z}\) the ratio of rigidity between bending and shear with respect to y and z axis, respectively.

$$\begin{aligned} \phi _y = \dfrac{12}{L^2} \dfrac{ \displaystyle \int _S E y^2 \mathrm{d}A}{\kappa _y \displaystyle \int _S G \mathrm{d}S}; \qquad \phi _z = \dfrac{12}{L^2} \dfrac{ \displaystyle \int _S E z^2 \mathrm{d}A}{\kappa _z \displaystyle \int _S G \mathrm{d}S} \end{aligned}$$

\(\kappa _y\) and \(\kappa _z\) are the shear correction factors in y and z direction, respectively.

Shape functions for strain vector:

$$\begin{aligned} B_1&= \dfrac{\partial N_1}{\partial x} = -\dfrac{1}{L}; \qquad B_2 = \dfrac{\partial N_2}{\partial x} = \dfrac{1}{L}, \\ B_{3y/z}&= \dfrac{\partial N_{3y/z}}{\partial x} - N_{7y/z} = - \dfrac{\phi _{y/z}}{L \left( 1 + \phi _{y/z} \right) }, \\ B_{4y/z}&= \dfrac{\partial N_{4y/z}}{\partial x} - N_{8y/z} = - \dfrac{\phi _{y/z}}{2 \left( 1 + \phi _{y/z} \right) }, \\ B_{5y/z}&= \dfrac{\partial N_{5y/z}}{\partial x} - N_{9y/z} = \dfrac{\phi _{y/z}}{L \left( 1 + \phi _{y/z} \right) }, \\ B_{6y/z}&= \dfrac{\partial N_{6y/z}}{\partial x} - N_{10y/z} = - \dfrac{\phi _{y/z}}{2 \left( 1 + \phi _{y/z} \right) }, \\ B_{7y/z}&= -\dfrac{\partial N_{7y/z}}{\partial x} = - \dfrac{6}{L \left( 1 + \phi _{y/z} \right) } \left( \dfrac{2x}{L^2} - \dfrac{1}{L}\right) , \\ B_{8y/z}&= -\dfrac{\partial N_{8y/z}}{\partial x} = \dfrac{1}{\left( 1 + \phi _{y/z} \right) } \left( \dfrac{6x}{L^2} - \dfrac{4 + \phi _{y/z}}{L}\right) , \\ B_{9y/z}&= -\dfrac{\partial N_{9y/z}}{\partial x} = - \dfrac{6}{L \left( 1 + \phi _{y/z} \right) } \left( \dfrac{2x}{L^2} - \dfrac{1}{L}\right) , \\ B_{10y/z}&= -\dfrac{\partial N_{10y/z}}{\partial x} =\dfrac{1}{\left( 1 + \phi _{y/z} \right) } \left( \dfrac{6x}{L^2} -\dfrac{2 - \phi _{y/z}}{L}\right) . \end{aligned}$$

Appendix B. Lagrange interpolation polynomial and enhanced compatibility matrix

Longitudinal interpolation matrix \({\mathbf {L}}(x)\) of (\(3 \times 3.3.n_{\mathrm{w}}\)):

$$\begin{aligned} {\mathbf {L}}(x) = \begin{bmatrix} {\mathbf {L}}_1(x)&\quad \dots&\quad {\mathbf {L}}_i(x)&\quad \dots {\mathbf {L}}_{nw}(x) \end{bmatrix}. \end{aligned}$$
(B.1)

\({\mathbf {L}}_i(x)\) is a matrix of \(3 \times 3.3\), containing the 1D Lagrange polynomial at section i:

$$\begin{aligned} {\mathbf {L}}_i(x) = \begin{bmatrix} L_i(x) &{}\quad 0 &{}\quad 0 &{}\quad L_i(x) &{}\quad 0 &{}\quad 0 &{}\quad L_i(x) &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad L_i(x) &{}\quad 0 &{}\quad 0 &{}\quad L_i(x) &{}\quad 0 &{}\quad 0 &{}\quad L_i(x) &{}\quad 0\\ 0 &{}\quad 0 &{}\quad L_i(x) &{}\quad 0 &{}\quad 0 &{}\quad L_i(x) &{}\quad 0 &{}\quad 0 &{}\quad L_i(x) \end{bmatrix}. \end{aligned}$$
(B.2)

Sectional interpolation matrices \({\mathbf {S}}_x(y,z)\) of (\(3.3.n_{\mathrm{w}} \times 3.s_{\mathrm{w}}.n_{\mathrm{w}}\)):

$$\begin{aligned} {\mathbf {S}}_x(y,z) = \begin{bmatrix} \hat{{\mathbf {S}}}_x(y,z) &{}\quad {\mathbf {0}}_{\mathrm{w}} &{}\quad {\mathbf {0}}_{\mathrm{w}} \\ {\mathbf {0}}_{\mathrm{w}} &{}\quad \hat{{\mathbf {S}}}_x(y,z) &{}\quad {\mathbf {0}}_{\mathrm{w}} \\ {\mathbf {0}}_{\mathrm{w}} &{}\quad {\mathbf {0}}_{\mathrm{w}} &{}\quad \hat{{\mathbf {S}}}_x(y,z) \end{bmatrix}; \quad \hat{{\mathbf {S}}}_x(y,z) = \begin{bmatrix} {{\mathbf {S}}_x^u}(y,z) &{}\quad {\mathbf {0}}_{3sw} &{}\quad {\mathbf {0}}_{3sw} \\ {\mathbf {0}}_{3sw} &{}\quad {{\mathbf {S}}_x^v}(y,z) &{}\quad {\mathbf {0}}_{3sw} \\ {\mathbf {0}}_{3sw} &{}\quad {\mathbf {0}}_{3sw} &{}\quad {{\mathbf {S}}_x^w}(y,z) \end{bmatrix}, \end{aligned}$$
(B.3)

where \({\mathbf {0}}_{\mathrm{w}}\) is a zero matrix of (\(9 \times 3.s_{\mathrm{w}}\)) columns; \({\mathbf {0}}_{3sw}\) is a zero matrix of (\(3 \times s_{\mathrm{w}}\)); \({\mathbf {S}}_x^u(y,z)\), \({\mathbf {S}}_x^v(y,z)\) and \({\mathbf {S}}_x^w(y,z)\) are three matrices of (\(3 \times s_{\mathrm{w}}\)) containing the row vector \(\bar{{\mathbf {S}}}(y,z)\) in Eq. (8) and the zero row vector of \(s_{\mathrm{w}}\) columns:

$$\begin{aligned} {{\mathbf {S}}_x^u}(y,z) = \begin{bmatrix} \bar{{\mathbf {S}}}(y,z) \\ {\mathbf {0}}_{sw} \\ {\mathbf {0}}_{sw} \end{bmatrix}; \quad {{\mathbf {S}}_x^v}(y,z) = \begin{bmatrix} {\mathbf {0}}_{sw} \\ \bar{{\mathbf {S}}}(y,z) \\ {\mathbf {0}}_{sw} \end{bmatrix}; \quad {{\mathbf {S}}_x^w}(y,z) = \begin{bmatrix} {\mathbf {0}}_{sw} \\ {\mathbf {0}}_{sw} \\ \bar{{\mathbf {S}}}(y,z) \end{bmatrix}. \qquad \end{aligned}$$
(B.4)

Sectional interpolation matrices \({\mathbf {S}}_{yz}(y,z)\):

$$\begin{aligned} {\mathbf {S}}_{yz}(y,z) = \begin{bmatrix} \hat{{\mathbf {S}}}_{yz}(y,z) &{}\quad {\mathbf {0}}_{\mathrm{w}} &{}\quad {\mathbf {0}}_{\mathrm{w}} \\ {\mathbf {0}}_{\mathrm{w}} &{}\quad \hat{{\mathbf {S}}}_{yz}(y,z) &{}\quad {\mathbf {0}}_{\mathrm{w}} \\ {\mathbf {0}}_{\mathrm{w}} &{}\quad {\mathbf {0}}_{\mathrm{w}} &{}\quad \hat{{\mathbf {S}}}_{yz}(y,z) \end{bmatrix}; \quad \hat{{\mathbf {S}}}_{yz}(y,z) = \begin{bmatrix} {\mathbf {S}}_{yz}^u(y,z) &{}\quad {\mathbf {0}}_{3sw} &{}\quad {\mathbf {0}}_{3sw} \\ {\mathbf {0}}_{3sw} &{}\quad {\mathbf {S}}_{yz}^v(y,z) &{}\quad {\mathbf {0}}_{3sw} \\ {\mathbf {0}}_{3sw} &{}\quad {\mathbf {0}}_{3sw} &{}\quad {\mathbf {S}}_{yz}^w(y,z) \end{bmatrix}.\nonumber \\ \end{aligned}$$
(B.5)

\({\mathbf {S}}_{yz}^u(y,z)\), \({\mathbf {S}}_{yz}^v(y,z)\) and \({\mathbf {S}}_{yz}^w(y,z)\) are three matrices of (\(3 \times s_{\mathrm{w}}\)) containing the derivation with respect to y and z of the row vector \(\bar{{\mathbf {S}}}(y,z)\) in Eq. (8) and the zero row vector of \(s_{\mathrm{w}}\) columns:

$$\begin{aligned} {\mathbf {S}}_{yz}^u(y,z) = \begin{bmatrix} {\mathbf {0}}_{sw} \\ \dfrac{\partial \bar{{\mathbf {S}}}(y,z)}{\partial y} \\ \dfrac{\partial \bar{{\mathbf {S}}}(y,z)}{\partial z} \\ \end{bmatrix}; \quad {\mathbf {S}}_{yz}^v(y,z) = \begin{bmatrix} {\mathbf {0}}_{sw} \\ {\mathbf {0}}_{sw} \\ {\mathbf {0}}_{sw} \end{bmatrix}; \quad {\mathbf {S}}_{yz}^w(y,z) = \begin{bmatrix} {\mathbf {0}}_{sw} \\ {\mathbf {0}}_{sw} \\ {\mathbf {0}}_{sw} \end{bmatrix} \end{aligned}$$
(B.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TA., Nguyen, QH. & Somja, H. Nonlinear analysis of RC members subjected to combined bending–shear–torsion stresses: a numerical multi-fiber displacement-based finite element model with warping. Acta Mech 232, 2635–2658 (2021). https://doi.org/10.1007/s00707-021-02966-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02966-x

Navigation