1932

Abstract

Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-102119-073227
2021-04-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-102119-073227.html?itemId=/content/journals/10.1146/annurev-immunol-102119-073227&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Zeiser R, Blazar BR. 2017. Acute graft-versus-host disease—biologic process, prevention, and therapy. N. Engl. J. Med. 377:2167–79
    [Google Scholar]
  2. 2. 
    Zeiser R, Blazar BR. 2017. Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N. Engl. J. Med. 377:2565–79
    [Google Scholar]
  3. 3. 
    Blazar BR, Hill GR, Murphy WJ 2020. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat. Rev. Clin. Oncol 17:475–92
    [Google Scholar]
  4. 4. 
    Zeiser R, Blazar BR. 2016. Preclinical models of acute and chronic graft-versus-host disease: How predictive are they for a successful clinical translation. ? Blood 127:3117–26
    [Google Scholar]
  5. 5. 
    Schroeder MA, DiPersio JF. 2011. Mouse models of graft-versus-host disease: advances and limitations. Dis. Model. Mech. 4:318–33
    [Google Scholar]
  6. 6. 
    Koyama M, Hill GR. 2019. The primacy of gastrointestinal tract antigen-presenting cells in lethal graft-versus-host disease. Blood 134:2139–48
    [Google Scholar]
  7. 7. 
    Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hülsdünker J et al. 2019. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity 51:5885–98.e7
    [Google Scholar]
  8. 8. 
    Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y et al. 2017. ILC1 confer early host protection at initial sites of viral infection. Cell 171:795–808.e12
    [Google Scholar]
  9. 9. 
    Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S et al. 2013. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38:769–81
    [Google Scholar]
  10. 10. 
    Bruce DW, Stefanski HE, Vincent BG, Dant TA, Reisdorf S et al. 2017. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J. Clin. Investig. 127:1813–25
    [Google Scholar]
  11. 11. 
    Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF et al. 2012. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37:339–50
    [Google Scholar]
  12. 12. 
    Anderson BE, McNiff J, Yan J, Doyle H, Mamula M et al. 2003. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Investig. 112:101–8
    [Google Scholar]
  13. 13. 
    Koyama M, Kuns RD, Olver SD, Raffelt NC, Wilson YA et al. 2012. Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nat. Med. 18:135–42
    [Google Scholar]
  14. 14. 
    Jordan-Garrote A, Brede C, Riedel SS, Bauerlein CA, Ritz M et al. 2012. Depletion of host dendritic cells during the effector phase of GVHD enhances acute GVHD and mortality. Biol. Blood Marrow Transplant. 18:S329
    [Google Scholar]
  15. 15. 
    Rowe V, Banovic T, Macdonald KP, Kuns R, Don AL et al. 2006. Host B cells produce IL-10 following TBI and attenuate acute GVHD after allogeneic bone marrow transplantation. Blood 107:2485–92
    [Google Scholar]
  16. 16. 
    Li H, Demetris AJ, McNiff J, Matte-Martone C, Tan HS et al. 2012. Profound depletion of host conventional dendritic cells, plasmacytoid dendritic cells, and B cells does not prevent graft-versus-host disease induction. J. Immunol. 188:3804–11
    [Google Scholar]
  17. 17. 
    Hashimoto D, Chow A, Greter M, Saenger Y, Kwan WH et al. 2011. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J. Exp. Med. 208:1069–82
    [Google Scholar]
  18. 18. 
    Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME et al. 1999. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285:412–15
    [Google Scholar]
  19. 19. 
    Gartlan KH, Koyama M, Lineburg KE, Chang K, Ensbey KS et al. 2019. Donor T-cell-derived GM-CSF drives alloantigen presentation by dendritic cells in the gastrointestinal tract. Blood Adv 3:2859–65
    [Google Scholar]
  20. 20. 
    Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R et al. 2012. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209:903–11
    [Google Scholar]
  21. 21. 
    Stein-Thoeringer CK, Nichols KB, Lazrak A, Docampo MD, Slingerland AE et al. 2019. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 366:1143–49
    [Google Scholar]
  22. 22. 
    Markey KA, Schluter J, Gomes ALC, Littmann ER, Pickard AJ et al. 2020. The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD. Blood 136:130–36
    [Google Scholar]
  23. 23. 
    Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E et al. 2016. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl. Med. 8:339ra71
    [Google Scholar]
  24. 24. 
    Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD et al. 2015. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant. 21:1373–83
    [Google Scholar]
  25. 25. 
    Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y et al. 2020. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 382:822–34
    [Google Scholar]
  26. 26. 
    Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C et al. 2018. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10:eaap9489
    [Google Scholar]
  27. 27. 
    Shono Y, van den Brink MRM 2018. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat. Rev. Cancer 18:283–95
    [Google Scholar]
  28. 28. 
    Staffas A, Burgos da Silva M, van den Brink MR 2017. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood 129:927–33
    [Google Scholar]
  29. 29. 
    Koyama M, Cheong M, Markey KA, Gartlan KH, Kuns RD et al. 2015. Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. J. Exp. Med. 212:1303–21
    [Google Scholar]
  30. 30. 
    Toubai T, Mathewson ND, Magenau J, Reddy P 2016. Danger signals and graft-versus-host disease: current understanding and future perspectives. Front. Immunol. 7:539
    [Google Scholar]
  31. 31. 
    Purvis HA, Stoop JN, Mann J, Woods S, Kozijn AE et al. 2010. Low-strength T-cell activation promotes Th17 responses. Blood 116:4829–37
    [Google Scholar]
  32. 32. 
    Murphy KM, Reiner SL. 2002. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2:933–44
    [Google Scholar]
  33. 33. 
    Furlan SN, Watkins B, Tkachev V, Flynn R, Cooley S et al. 2015. Transcriptome analysis of GVHD reveals aurora kinase A as a targetable pathway for disease prevention. Sci. Transl. Med. 7:315ra191
    [Google Scholar]
  34. 34. 
    Ross D, Jones M, Komanduri K, Levy RB 2013. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 19:1430–38
    [Google Scholar]
  35. 35. 
    Krenger W, Falzarano G, Delmonte J Jr, Snyder KM, Byon JC, Ferrara JL 1996. Interferon-gamma suppresses T-cell proliferation to mitogen via the nitric oxide pathway during experimental acute graft-versus-host disease. Blood 88:1113–21
    [Google Scholar]
  36. 36. 
    Takashima S, Martin ML, Jansen SA, Fu Y, Bos J et al. 2019. T cell–derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci. Immunol. 4:eaay8556
    [Google Scholar]
  37. 37. 
    Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Taylor PA, Mellor AL et al. 2008. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood 111:3257–65
    [Google Scholar]
  38. 38. 
    Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG et al. 2013. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood 122:3062–73
    [Google Scholar]
  39. 39. 
    Burman AC, Banovic T, Kuns RD, Clouston AD, Stanley AC et al. 2007. IFNγ differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. Blood 110:1064–72
    [Google Scholar]
  40. 40. 
    Baker MB, Altman NH, Podack ER, Levy RB 1996. The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J. Exp. Med. 183:2645–56
    [Google Scholar]
  41. 41. 
    Lin T, Brunner T, Tietz B, Madsen J, Bonfoco E et al. 1998. Fas ligand- mediated killing by intestinal intraepithelial lymphocytes: participation in intestinal graft-versus-host disease. J. Clin. Investig. 101:570–77
    [Google Scholar]
  42. 42. 
    Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N et al. 2010. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115:335–43
    [Google Scholar]
  43. 43. 
    Gartlan KH, Markey KA, Varelias A, Bunting MD, Koyama M et al. 2015. Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects. Blood 126:1609–20
    [Google Scholar]
  44. 44. 
    Schwab L, Goroncy L, Palaniyandi S, Gautam S, Triantafyllopoulou A et al. 2014. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nat. Med. 20:648–54
    [Google Scholar]
  45. 45. 
    Carlson MJ, West ML, Coghill JM, Panoskaltsis-Mortari A, Blazar BR, Serody JS 2009. In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood 113:1365–74
    [Google Scholar]
  46. 46. 
    Delens L, Ehx G, Somja J, Vrancken L, Belle L et al. 2019. In vitro Th17-polarized human CD4+ T cells exacerbate xenogeneic graft-versus-host disease. Biol. Blood Marrow Transplant. 25:204–15
    [Google Scholar]
  47. 47. 
    Furlan SN, Watkins B, Tkachev V, Cooley S, Panoskaltsis-Mortari A et al. 2016. Systems analysis uncovers inflammatory Th/Tc17-driven modules during acute GVHD in monkey and human T cells. Blood 128:2568–79
    [Google Scholar]
  48. 48. 
    Varelias A, Gartlan KH, Kreijveld E, Olver S, Lor M et al. 2015. Lung parenchyma-derived IL-6 promotes IL-17A-dependent acute lung injury after allogeneic stem cell transplantation. Blood 125:152435–44
    [Google Scholar]
  49. 49. 
    Tugues S, Amorim A, Spath S, Martin-Blondel G, Schreiner B et al. 2018. Graft-versus-host disease, but not graft-versus-leukemia immunity, is mediated by GM-CSF-licensed myeloid cells. Sci. Transl. Med. 10:469eaat8410
    [Google Scholar]
  50. 50. 
    Piper C, Zhou V, Komorowski R, Szabo A, Vincent B et al. 2020. Pathogenic Bhlhe40+ GM-CSF+ CD4+ T cells promote indirect alloantigen presentation in the GI tract during GVHD. Blood 135:568–81
    [Google Scholar]
  51. 51. 
    Degli-Esposti MA, Smyth MJ. 2005. Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nat. Rev. Immunol. 5:112–24
    [Google Scholar]
  52. 52. 
    Sungur CM, Tang-Feldman YJ, Zamora AE, Alvarez M, Pomeroy C, Murphy WJ 2013. Murine NK-cell licensing is reflective of donor MHC-I following allogeneic hematopoietic stem cell transplantation in murine cytomegalovirus responses. Blood 122:1518–21
    [Google Scholar]
  53. 53. 
    Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI 2012. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12:845–57
    [Google Scholar]
  54. 54. 
    Pillai AB, George TI, Dutt S, Strober S 2009. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113:4458–67
    [Google Scholar]
  55. 55. 
    Lowsky R, Takahashi T, Liu YP, Dejbakhsh-Jones S, Grumet FC et al. 2005. Protective conditioning for acute graft-versus-host disease. N. Engl. J. Med. 353:1321–31
    [Google Scholar]
  56. 56. 
    Morris ES, Macdonald KP, Rowe V, Banovic T, Kuns RD et al. 2005. NKT cell–dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J. Clin. Investig. 115:3093–103
    [Google Scholar]
  57. 57. 
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B et al. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–23
    [Google Scholar]
  58. 58. 
    Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD et al. 2018. Recipient mucosal-associated invariant T cells control GVHD within the colon. J. Clin. Investig. 128:1919–36
    [Google Scholar]
  59. 59. 
    Varelias A, Ormerod KL, Bunting MD, Koyama M, Gartlan KH et al. 2017. Acute graft-versus-host disease is regulated by an IL-17-sensitive microbiome. Blood 129:2172–85
    [Google Scholar]
  60. 60. 
    Varelias A, Gartlan KH, Wilkinson AN, Olver SD, Samson LD et al. 2019. Expansion of IL-17A-secreting MAIT cells in peripheral blood following stem cell mobilization. Blood Adv 3:5718–23
    [Google Scholar]
  61. 61. 
    Bhattacharyya A, Hanafi LA, Sheih A, Golob JL, Srinivasan S et al. 2018. Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 24:242–51
    [Google Scholar]
  62. 62. 
    Nielsen MM, Witherden DA, Havran WL 2017. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17:733–45
    [Google Scholar]
  63. 63. 
    Maeda Y, Reddy P, Lowler KP, Liu C, Bishop DK, Ferrara JL 2005. Critical role of host γδ T cells in experimental acute graft-versus-host disease. Blood 106:749–55
    [Google Scholar]
  64. 64. 
    Minculescu L, Marquart HV, Ryder LP, Andersen NS, Schjoedt I et al. 2019. Improved overall survival, relapse-free-survival, and less graft-vs.-host-disease in patients with high immune reconstitution of TCR gamma delta cells 2 months after allogeneic stem cell transplantation. Front. Immunol. 10:1997
    [Google Scholar]
  65. 65. 
    Minculescu L, Sengelov H. 2015. The role of gamma delta T cells in haematopoietic stem cell transplantation. Scand. J. Immunol. 81:459–68
    [Google Scholar]
  66. 66. 
    Hulsdunker J, Ottmuller KJ, Neeff HP, Koyama M, Gao Z et al. 2018. Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset. Blood 131:1858–69
    [Google Scholar]
  67. 67. 
    Magenau J, Braun T, Gatza E, Churay T, Mazzoli A et al. 2019. Assessment of individual versus composite endpoints of acute graft-versus-host disease in determining long-term survival after allogeneic transplantation. Biol. Blood Marrow Transplant. 25:1682–88
    [Google Scholar]
  68. 68. 
    Storb R, Deeg HJ, Whitehead J, Appelbaum F, Beatty P et al. 1986. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N. Engl. J. Med. 314:729–35
    [Google Scholar]
  69. 69. 
    Niederwieser D, Maris M, Shizuru JA, Petersdorf E, Hegenbart U et al. 2003. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood 101:1620–29
    [Google Scholar]
  70. 70. 
    Sandmaier BM, Kornblit B, Storer BE, Olesen G, Maris MB et al. 2019. Addition of sirolimus to standard cyclosporine plus mycophenolate mofetil-based graft-versus-host disease prophylaxis for patients after unrelated non-myeloablative haemopoietic stem cell transplantation: a multicentre, randomised, phase 3 trial. Lancet Haematol 6:e409–18
    [Google Scholar]
  71. 71. 
    Ruutu T, Volin L, Parkkali T, Juvonen E, Elonen E 2000. Cyclosporine, methotrexate, and methylprednisolone compared with cyclosporine and methotrexate for the prevention of graft-versus-host disease in bone marrow transplantation from HLA-identical sibling donor: a prospective randomized study. Blood 96:2391–98
    [Google Scholar]
  72. 72. 
    Mohty M. 2007. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia 21:1387–94
    [Google Scholar]
  73. 73. 
    Kroger N, Solano C, Wolschke C, Bandini G, Patriarca F et al. 2016. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N. Engl. J. Med. 374:43–53
    [Google Scholar]
  74. 74. 
    Soiffer RJ, Kim HT, McGuirk J, Horwitz ME, Johnston L et al. 2017. Prospective, randomized, double-blind, phase III clinical trial of anti-T-lymphocyte globulin to assess impact on chronic graft-versus-host disease-free survival in patients undergoing HLA-matched unrelated myeloablative hematopoietic cell transplantation. J. Clin. Oncol. 35:4003–11
    [Google Scholar]
  75. 75. 
    Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C et al. 2015. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J. Clin. Investig. 125:2677–89
    [Google Scholar]
  76. 76. 
    Luznik L, O'Donnell PV, Fuchs EJ 2012. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin. Oncol. 39:683–93
    [Google Scholar]
  77. 77. 
    McCurdy SR, Kasamon YL, Kanakry CG, Bolanos-Meade J, Tsai HL et al. 2017. Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica 102:391–400
    [Google Scholar]
  78. 78. 
    Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG 2019. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J. Clin. Investig. 129:2357–73
    [Google Scholar]
  79. 79. 
    Reshef R, Ganetsky A, Acosta EP, Blauser R, Crisalli L et al. 2019. Extended CCR5 blockade for graft-versus-host disease prophylaxis improves outcomes of reduced-intensity unrelated donor hematopoietic cell transplantation: a phase II clinical trial. Biol. Blood Marrow Transplant. 25:515–21
    [Google Scholar]
  80. 80. 
    Toubai T, Hou G, Mathewson N, Liu C, Wang Y et al. 2014. Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice. Blood 123:3512–23
    [Google Scholar]
  81. 81. 
    Kennedy GA, Varelias A, Vuckovic S, Le Texier L, Gartlan KH et al. 2014. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol 15:1451–59
    [Google Scholar]
  82. 82. 
    Pidala J, Beato F, Kim J, Betts B, Jim H et al. 2018. In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation. Haematologica 103:531–39
    [Google Scholar]
  83. 83. 
    Reddy P, Sun Y, Toubai T, Duran-Struuck R, Clouthier SG et al. 2008. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Investig. 118:2562–73
    [Google Scholar]
  84. 84. 
    Choi SW, Braun T, Chang L, Ferrara JL, Pawarode A et al. 2014. Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol 15:87–95
    [Google Scholar]
  85. 85. 
    Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A et al. 2016. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17:505–13
    [Google Scholar]
  86. 86. 
    Shono Y, van den Brink MRM 2018. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat. Rev. Cancer 18:283–95
    [Google Scholar]
  87. 87. 
    Kohler N, Zeiser R. 2018. Intestinal microbiota influence immune tolerance post allogeneic hematopoietic cell transplantation and intestinal GVHD. Front. Immunol. 9:3179
    [Google Scholar]
  88. 88. 
    Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D et al. 2020. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N. Engl. J. Med. 382:191800–10
    [Google Scholar]
  89. 89. 
    MacDonald KPA, Betts BC, Couriel D 2018. Emerging therapeutics for the control of chronic graft-versus-host disease. Biol. Blood Marrow Transplant. 24:19–26
    [Google Scholar]
  90. 90. 
    Heine A, Brossart P, Wolf D 2013. Ruxolitinib is a potent immunosuppressive compound: Is it time for anti-infective prophylaxis. ? Blood 122:3843–44
    [Google Scholar]
  91. 91. 
    Magenau JM, Goldstein SC, Peltier D, Soiffer RJ, Braun T et al. 2018. α1-Antitrypsin infusion for treatment of steroid-resistant acute graft-versus-host disease. Blood 131:1372–79
    [Google Scholar]
  92. 92. 
    Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528:560–64
    [Google Scholar]
  93. 93. 
    Martin PJ. 2020. How I treat steroid-refractory acute graft-versus-host disease. Blood 135:1630–38
    [Google Scholar]
  94. 94. 
    Rafei H, Kharfan-Dabaja MA, Nishihori T 2017. A critical appraisal of extracorporeal photopheresis as a treatment modality for acute and chronic graft-versus-host disease. Biomedicines 5:460
    [Google Scholar]
  95. 95. 
    Nygaard M, Wichert S, Berlin G, Toss F 2020. Extracorporeal photopheresis for graft-vs-host disease: a literature review and treatment guidelines proposed by the Nordic ECP Quality Group. Eur. J. Haematol. 104:361–75
    [Google Scholar]
  96. 96. 
    Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D et al. 2015. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-Versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol. Blood Marrow Transplant. 21:389–401.e1
    [Google Scholar]
  97. 97. 
    Lee SJ, Wolff D, Kitko C, Koreth J, Inamoto Y et al. 2015. Measuring therapeutic response in chronic graft-versus-host disease. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-Versus-Host Disease: IV. The 2014 Response Criteria Working Group report. Biol. Blood Marrow Transplant. 21:984–99
    [Google Scholar]
  98. 98. 
    Parkman R. 1989. Graft-versus-host disease: an alternative hypothesis. Immunol. Today 10:362–64
    [Google Scholar]
  99. 99. 
    Kuzmina Z, Gounden V, Curtis L, Avila D, Taylor T et al. 2015. Clinical significance of autoantibodies in a large cohort of patients with chronic graft-versus-host disease defined by NIH criteria. Am. J. Hematol. 90:114–19
    [Google Scholar]
  100. 100. 
    Fukushi N, Arase H, Wang B, Ogasawara K, Gotohda T et al. 1990. Thymus: a direct target tissue in graft-versus-host reaction after allogeneic bone marrow transplantation that results in abrogation of induction of self-tolerance. PNAS 87:6301–5
    [Google Scholar]
  101. 101. 
    Sakoda Y, Hashimoto D, Asakura S, Takeuchi K, Harada M et al. 2007. Donor-derived thymic-dependent T cells cause chronic graft-versus-host disease. Blood 109:1756–64
    [Google Scholar]
  102. 102. 
    Zhao D, Zhang C, Yi T, Lin CL, Todorov I et al. 2008. In vivo-activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood 112:2129–38
    [Google Scholar]
  103. 103. 
    Leveque-El mouttie L, Koyama M, Le Texier L, Markey KA, Cheong M et al. 2016. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD. Blood 128:794–804
    [Google Scholar]
  104. 104. 
    Lockridge JL, Zhou Y, Becker YA, Ma S, Kenney SC et al. 2013. Mice engrafted with human fetal thymic tissue and hematopoietic stem cells develop pathology resembling chronic graft-versus-host disease. Biol. Blood Marrow Transplant. 19:1310–22
    [Google Scholar]
  105. 105. 
    Zhang C, Todorov I, Zhang Z, Liu Y, Kandeel F et al. 2006. Donor CD4+ T and B cells in transplants induce chronic graft-versus-host disease with autoimmune manifestations. Blood 107:2993–3001
    [Google Scholar]
  106. 106. 
    Young JS, Wu T, Chen Y, Zhao D, Liu H et al. 2012. Donor B cells in transplants augment clonal expansion and survival of pathogenic CD4+ T cells that mediate autoimmune-like chronic graft-versus-host disease. J. Immunol. 189:222–33
    [Google Scholar]
  107. 107. 
    Srinivasan M, Flynn R, Price A, Ranger A, Browning JL et al. 2012. Donor B-cell alloantibody deposition and germinal center formation are required for the development of murine chronic GVHD and bronchiolitis obliterans. Blood 119:1570–80
    [Google Scholar]
  108. 108. 
    Jin H, Ni X, Deng R, Song Q, Young J et al. 2016. Antibodies from donor B cells perpetuate cutaneous chronic graft-versus-host disease in mice. Blood 127:2249–60
    [Google Scholar]
  109. 109. 
    Gartlan KH, Bommiasamy H, Paz K, Wilkinson AN, Owen M et al. 2018. A critical role for donor-derived IL-22 in cutaneous chronic GVHD. Am. J. Transplant. 18:810–20
    [Google Scholar]
  110. 110. 
    MacDonald KP, Blazar BR, Hill GR 2017. Cytokine mediators of chronic graft-versus-host disease. J. Clin. Investig. 127:2452–63
    [Google Scholar]
  111. 111. 
    Flynn R, Du J, Veenstra RG, Reichenbach DK, Panoskaltsis-Mortari A et al. 2014. Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans. Blood 123:3988–98
    [Google Scholar]
  112. 112. 
    Deng R, Hurtz C, Song Q, Yue C, Xiao G et al. 2017. Extrafollicular CD4+ T-B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nat. Commun. 8:978
    [Google Scholar]
  113. 113. 
    Forcade E, Paz K, Flynn R, Griesenauer B, Amet T et al. 2017. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight 2:12e92111
    [Google Scholar]
  114. 114. 
    Hill GR, Olver SD, Kuns RD, Varelias A, Raffelt NC et al. 2010. Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood 116:819–28
    [Google Scholar]
  115. 115. 
    Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE et al. 2014. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J. Clin. Investig. 124:4266–80
    [Google Scholar]
  116. 116. 
    Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M et al. 2017. The biology of chronic graft-versus-host disease: a task force report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-Versus-Host Disease. Biol. Blood Marrow Transplant. 23:211–34
    [Google Scholar]
  117. 117. 
    Sarantopoulos S, Stevenson KE, Kim HT, Bhuiya NS, Cutler CS et al. 2007. High levels of B-cell activating factor in patients with active chronic graft-versus-host disease. Clin. Cancer Res. 13:6107–14
    [Google Scholar]
  118. 118. 
    Rozmus J, Kariminia A, Abdossamadi S, Storer BE, Martin PJ et al. 2019. Comprehensive B cell phenotyping profile for chronic graft-versus-host disease diagnosis. Biol. Blood Marrow Transplant. 25:451–58
    [Google Scholar]
  119. 119. 
    Zorn E, Miklos DB, Floyd BH, Mattes-Ritz A, Guo L et al. 2004. Minor histocompatibility antigen DBY elicits a coordinated B and T cell response after allogeneic stem cell transplantation. J. Exp. Med. 199:1133–42
    [Google Scholar]
  120. 120. 
    Svegliati S, Olivieri A, Campelli N, Luchetti M, Poloni A et al. 2007. Stimulatory autoantibodies to PDGF receptor in patients with extensive chronic graft-versus-host disease. Blood 110:237–41
    [Google Scholar]
  121. 121. 
    Wang KS, Kim HT, Nikiforow S, Heubeck AT, Ho VT et al. 2017. Antibodies targeting surface membrane antigens in patients with chronic graft-versus-host disease. Blood 130:2889–99
    [Google Scholar]
  122. 122. 
    Zhang M, Wu Y, Bastian D, Iamsawat S, Chang J et al. 2018. Inducible T-cell co-stimulator impacts chronic graft-versus-host disease by regulating both pathogenic and regulatory T cells. Front. Immunol. 9:1461
    [Google Scholar]
  123. 123. 
    Wu Y, Schutt S, Paz K, Zhang M, Flynn RP et al. 2018. MicroRNA-17-92 is required for T-cell and B-cell pathogenicity in chronic graft-versus-host disease in mice. Blood 131:1974–86
    [Google Scholar]
  124. 124. 
    Forcade E, Kim HT, Cutler C, Wang K, Alho AC et al. 2016. Circulating T follicular helper cells with increased function during chronic graft-versus-host disease. Blood 127:2489–97
    [Google Scholar]
  125. 125. 
    Socie G, Ritz J. 2014. Current issues in chronic graft-versus-host disease. Blood 124:374–84
    [Google Scholar]
  126. 126. 
    Radojcic V, Pletneva MA, Yen HR, Ivcevic S, Panoskaltsis-Mortari A et al. 2010. STAT3 signaling in CD4+ T cells is critical for the pathogenesis of chronic sclerodermatous graft-versus-host disease in a murine model. J. Immunol. 184:764–74
    [Google Scholar]
  127. 127. 
    Taylor DK, Mittereder N, Kuta E, Delaney T, Burwell T et al. 2018. T follicular helper–like cells contribute to skin fibrosis. Sci. Transl. Med. 10:431eaaf5307
    [Google Scholar]
  128. 128. 
    Matsuoka K, Kim HT, McDonough S, Bascug G, Warshauer B et al. 2010. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J. Clin. Investig. 120:1479–93
    [Google Scholar]
  129. 129. 
    Murase K, Kim HT, Bascug OR, Kawano Y, Ryan J et al. 2014. Increased mitochondrial apoptotic priming of human regulatory T cells after allogeneic hematopoietic stem cell transplantation. Haematologica 99:1499–508
    [Google Scholar]
  130. 130. 
    Zeiser R, Sarantopoulos S, Blazar BR 2018. B-cell targeting in chronic graft-versus-host disease. Blood 131:1399–405
    [Google Scholar]
  131. 131. 
    Johnston HF, Xu Y, Racine JJ, Cassady K, Ni X et al. 2014. Administration of anti-CD20 mAb is highly effective in preventing but ineffective in treating chronic graft-versus-host disease while preserving strong graft-versus-leukemia effects. Biol. Blood Marrow Transplant. 20:1089–103
    [Google Scholar]
  132. 132. 
    Cutler C, Kim HT, Bindra B, Sarantopoulos S, Ho VT et al. 2013. Rituximab prophylaxis prevents corticosteroid-requiring chronic GVHD after allogeneic peripheral blood stem cell transplantation: results of a phase 2 trial. Blood 122:1510–17
    [Google Scholar]
  133. 133. 
    Pai CC, Chen M, Mirsoian A, Grossenbacher SK, Tellez J et al. 2014. Treatment of chronic graft-versus-host disease with bortezomib. Blood 124:1677–88
    [Google Scholar]
  134. 134. 
    Dubovsky JA, Flynn R, Du J, Harrington BK, Zhong Y et al. 2014. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. J. Clin. Investig. 124:4867–76
    [Google Scholar]
  135. 135. 
    Miklos D, Cutler CS, Arora M, Waller EK, Jagasia M et al. 2017. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood 130:2243–50
    [Google Scholar]
  136. 136. 
    Flynn R, Allen JL, Luznik L, MacDonald KP, Paz K et al. 2015. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood 125:4085–94
    [Google Scholar]
  137. 137. 
    Poe JC, Jia W, Di Paolo JA, Reyes NJ, Kim JY et al. 2018. SYK inhibitor entospletinib prevents ocular and skin GVHD in mice. JCI Insight 3:19e122430
    [Google Scholar]
  138. 138. 
    Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K et al. 2015. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia 29:2062–68
    [Google Scholar]
  139. 139. 
    Flynn R, Paz K, Du J, Reichenbach DK, Taylor PA et al. 2016. Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism. Blood 127:2144–54
    [Google Scholar]
  140. 140. 
    Weiss JM, Chen W, Nyuydzefe MS, Trzeciak A, Flynn R et al. 2016. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci. Signal. 9:ra73
    [Google Scholar]
  141. 141. 
    Via CS, Rus V, Nguyen P, Linsley P, Gause WC 1996. Differential effect of CTLA4Ig on murine graft-versus-host disease (GVHD) development: CTLA4Ig prevents both acute and chronic GVHD development but reverses only chronic GVHD. J. Immunol. 157:4258–67
    [Google Scholar]
  142. 142. 
    Nahas MR, Soiffer RJ, Kim HT, Alyea EP 3rd, Arnason J et al. 2018. Phase 1 clinical trial evaluating abatacept in patients with steroid-refractory chronic graft-versus-host disease. Blood 131:252836–45
    [Google Scholar]
  143. 143. 
    Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B et al. 2011. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365:2055–66
    [Google Scholar]
  144. 144. 
    McDonald-Hyman C, Flynn R, Panoskaltsis-Mortari A, Peterson N, MacDonald KP et al. 2016. Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood 128:1013–17
    [Google Scholar]
  145. 145. 
    Hart JW, Shiue LH, Shpall EJ, Alousi AM 2013. Extracorporeal photopheresis in the treatment of graft-versus-host disease: evidence and opinion. Ther. Adv. Hematol. 4:320–34
    [Google Scholar]
  146. 146. 
    Zerr P, Distler A, Palumbo-Zerr K, Tomcik M, Vollath S et al. 2012. Combined inhibition of c-Abl and PDGF receptors for prevention and treatment of murine sclerodermatous chronic graft-versus-host disease. Am. J. Pathol. 181:1672–80
    [Google Scholar]
  147. 147. 
    Zerr P, Palumbo-Zerr K, Distler A, Tomcik M, Vollath S et al. 2012. Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood 120:2909–17
    [Google Scholar]
  148. 148. 
    Krenger W, Hollander GA. 2008. The immunopathology of thymic GVHD. Semin. Immunopathol. 30:439–56
    [Google Scholar]
  149. 149. 
    Simons L, Cavazzana M, Andre I 2019. Concise Review: Boosting T-cell reconstitution following allogeneic transplantation—current concepts and future perspectives. Stem Cells Transl. Med. 8:650–57
    [Google Scholar]
  150. 150. 
    Bunting MD, Varelias A, Souza-Fonseca-Guimaraes F, Schuster IS, Lineburg KE et al. 2017. GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 129:630–42
    [Google Scholar]
  151. 151. 
    Ullrich E, Salzmann-Manrique E, Bakhtiar S, Bremm M, Gerstner S et al. 2016. Relation between acute GVHD and NK cell subset reconstitution following allogeneic stem cell transplantation. Front. Immunol. 7:595
    [Google Scholar]
  152. 152. 
    Storek J, Wells D, Dawson MA, Storer B, Maloney DG 2001. Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood 98:489–91
    [Google Scholar]
  153. 153. 
    Martins JP, Andoniou CE, Fleming P, Kuns RD, Schuster IS et al. 2019. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science 363:288–93
    [Google Scholar]
  154. 154. 
    Reddy V, Iturraspe JA, Tzolas AC, Meier-Kriesche HU, Schold J, Wingard JR 2004. Low dendritic cell count after allogeneic hematopoietic stem cell transplantation predicts relapse, death, and acute graft-versus-host disease. Blood 103:4330–35
    [Google Scholar]
  155. 155. 
    Markey KA, Koyama M, Kuns RD, Lineburg KE, Wilson YA et al. 2012. Immune insufficiency during GVHD is due to defective antigen presentation within dendritic cell subsets. Blood 119:5918–30
    [Google Scholar]
  156. 156. 
    Thangavelu G, Blazar BR. 2019. Achievement of tolerance induction to prevent acute graft-versus-host disease. Front. Immunol. 10:309
    [Google Scholar]
  157. 157. 
    Na IK, Lu SX, Yim NL, Goldberg GL, Tsai J et al. 2010. The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. J. Clin. Investig. 120:343–56
    [Google Scholar]
  158. 158. 
    Dertschnig S, Hauri-Hohl MM, Vollmer M, Hollander GA, Krenger W 2015. Impaired thymic expression of tissue-restricted antigens licenses the de novo generation of autoreactive CD4+ T cells in acute GVHD. Blood 125:2720–23
    [Google Scholar]
  159. 159. 
    Chaudhry MS, Velardi E, Dudakov JA, van den Brink MR 2016. Thymus: the next (re)generation. Immunol. Rev. 271:56–71
    [Google Scholar]
  160. 160. 
    Dudakov JA, Mertelsmann AM, O'Connor MH, Jenq RR, Velardi E et al. 2017. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 130:933–42
    [Google Scholar]
  161. 161. 
    Zhang Y, Louboutin JP, Zhu J, Rivera AJ, Emerson SG 2002. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell–mediated acute graft-versus-host disease. J. Clin. Investig. 109:1335–44
    [Google Scholar]
  162. 162. 
    Dertschnig S, Evans P, Santos ESP, Manzo T, Ferrer IR et al. 2020. Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity. J. Clin. Investig. 130:1896–911
    [Google Scholar]
  163. 163. 
    Blazar BR, Sharpe AH, Taylor PA, Panoskaltsis-Mortari A, Gray GS et al. 1996. Infusion of anti-B7.1 (CD80) and anti-B7.2 (CD86) monoclonal antibodies inhibits murine graft-versus-host disease lethality in part via direct effects on CD4+ and CD8+ T cells. J. Immunol. 157:3250–59
    [Google Scholar]
  164. 164. 
    Pidala J, Hamadani M, Dawson P, Martens M, Alousi AM et al. 2020. Randomized multicenter trial of sirolimus versus prednisone as initial therapy for standard-risk acute GVHD: the BMT CTN 1501 trial. Blood 135:97–107
    [Google Scholar]
  165. 165. 
    Watkins BK, Tkachev V, Furlan SN, Hunt DJ, Betz K et al. 2018. CD28 blockade controls T cell activation to prevent graft-versus-host disease in primates. J. Clin. Investig. 128:3991–4007
    [Google Scholar]
  166. 166. 
    Blazar BR, Taylor PA, Linsley PS, Vallera DA 1994. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 83:3815–25
    [Google Scholar]
  167. 167. 
    Koura DT, Horan JT, Langston AA, Qayed M, Mehta A et al. 2013. In vivo T cell costimulation blockade with abatacept for acute graft-versus-host disease prevention: a first-in-disease trial. Biol. Blood Marrow Transplant. 19:1638–49
    [Google Scholar]
  168. 168. 
    Kean LS, Turka LA, Blazar BR 2017. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol. Rev. 276:192–212
    [Google Scholar]
  169. 169. 
    Blazar BR, MacDonald KPA, Hill GR 2018. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 131:2651–60
    [Google Scholar]
  170. 170. 
    Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N 2020. Regulatory T cells and human disease. Annu. Rev. Immunol. 38:541–66
    [Google Scholar]
  171. 171. 
    Fu W, Ergun A, Lu T, Hill JA, Haxhinasto S et al. 2012. A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat. Immunol. 13:972–80
    [Google Scholar]
  172. 172. 
    Sawant DV, Vignali DA. 2014. Once a Treg, always a Treg. ? Immunol. Rev. 259:173–91
    [Google Scholar]
  173. 173. 
    Liu Y, Wu Y, Wang Y, Cai Y, Hu B et al. 2015. IL-35 mitigates murine acute graft-versus-host disease with retention of graft-versus-leukemia effects. Leukemia 29:939–46
    [Google Scholar]
  174. 174. 
    Semple K, Yu Y, Wang D, Anasetti C, Yu XZ 2011. Efficient and selective prevention of GVHD by antigen-specific induced Tregs via linked-suppression in mice. Biol. Blood Marrow Transplant. 17:309–18
    [Google Scholar]
  175. 175. 
    Hippen KL, Merkel SC, Schirm DK, Nelson C, Tennis NC et al. 2011. Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease. Am. J. Transplant. 11:1148–57
    [Google Scholar]
  176. 176. 
    Laurence A, Amarnath S, Mariotti J, Kim YC, Foley J et al. 2012. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity 37:209–22
    [Google Scholar]
  177. 177. 
    Bucher C, Koch L, Vogtenhuber C, Goren E, Munger M et al. 2009. IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation. Blood 114:5375–84
    [Google Scholar]
  178. 178. 
    Taylor PA, Lees CJ, Blazar BR 2002. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99:3493–99
    [Google Scholar]
  179. 179. 
    Brunstein CG, Miller JS, McKenna DH, Hippen KL, DeFor TE et al. 2016. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127:1044–51
    [Google Scholar]
  180. 180. 
    Martin GH, Gregoire S, Landau DA, Pilon C, Grinberg-Bleyer Y et al. 2013. In vivo activation of transferred regulatory T cells specific for third-party exogenous antigen controls GVH disease in mice. Eur. J. Immunol. 43:2263–72
    [Google Scholar]
  181. 181. 
    Nguyen VH, Zeiser R, Dasilva DL, Chang DS, Beilhack A et al. 2007. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood 109:2649–56
    [Google Scholar]
  182. 182. 
    Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A et al. 2014. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 124:638–44
    [Google Scholar]
  183. 183. 
    Meyer EH, Laport G, Xie BJ, MacDonald K, Heydari K et al. 2019. Transplantation of donor grafts with defined ratio of conventional and regulatory T cells in HLA-matched recipients. JCI Insight 4:10e127244
    [Google Scholar]
  184. 184. 
    Zhang P, Tey SK, Koyama M, Kuns RD, Olver SD et al. 2013. Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J. Immunol. 191:5291–303
    [Google Scholar]
  185. 185. 
    Riegel C, Boeld TJ, Doser K, Huber E, Hoffmann P, Edinger M 2020. Efficient treatment of murine acute GvHD by in vitro expanded donor regulatory T cells. Leukemia 34:895–908
    [Google Scholar]
  186. 186. 
    Theil A, Tuve S, Oelschlagel U, Maiwald A, Dohler D et al. 2015. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy 17:473–86
    [Google Scholar]
  187. 187. 
    Trzonkowski P, Bieniaszewska M, Juscinska J, Dobyszuk A, Krzystyniak A et al. 2009. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127⁻ T regulatory cells. Clin. Immunol. 133:22–26
    [Google Scholar]
  188. 188. 
    Whitehouse G, Gray E, Mastoridis S, Merritt E, Kodela E et al. 2017. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. PNAS 114:7083–88
    [Google Scholar]
  189. 189. 
    Furlan SN, Singh K, Lopez C, Tkachev V, Hunt DJ et al. 2020. IL-2 enhances ex vivo-expanded regulatory T-cell persistence after adoptive transfer. Blood Adv 4:1594–605
    [Google Scholar]
  190. 190. 
    Matsuoka K, Koreth J, Kim HT, Bascug G, McDonough S et al. 2013. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci. Transl. Med. 5:179ra43
    [Google Scholar]
  191. 191. 
    Tkachev V, Furlan SN, Watkins B, Hunt DJ, Zheng HB et al. 2017. Combined OX40L and mTOR blockade controls effector T cell activation while preserving Treg reconstitution after transplant. Sci. Transl. Med. 9:408eaan3085
    [Google Scholar]
  192. 192. 
    Zheng SG, Wang JH, Koss MN, Quismorio F Jr, Gray JD, Horwitz DA 2004. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-β suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J. Immunol 172:1531–39
    [Google Scholar]
  193. 193. 
    Robb RJ, Lineburg KE, Kuns RD, Wilson YA, Raffelt NC et al. 2012. Identification and expansion of highly suppressive CD8+FoxP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood 119:5898–908
    [Google Scholar]
  194. 194. 
    Heinrichs J, Li J, Nguyen H, Wu Y, Bastian D et al. 2016. CD8+ Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4+ Tregs in mice. Oncoimmunology 5:e1146842
    [Google Scholar]
  195. 195. 
    Gregori S, Roncarolo MG. 2018. Engineered T regulatory type 1 cells for clinical application. Front. Immunol. 9:233
    [Google Scholar]
  196. 196. 
    Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I et al. 2017. Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci. Immunol. 2:10eaah7152
    [Google Scholar]
  197. 197. 
    Bacchetta R, Lucarelli B, Sartirana C, Gregori S, Lupo Stanghellini MT et al. 2014. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front. Immunol. 5:16
    [Google Scholar]
  198. 198. 
    Alhabbab RY, Nova-Lamperti E, Aravena O, Burton HM, Lechler RI et al. 2019. Regulatory B cells: development, phenotypes, functions, and role in transplantation. Immunol. Rev. 292:164–79
    [Google Scholar]
  199. 199. 
    Shimabukuro-Vornhagen A, Hallek MJ, Storb RF, von Bergwelt-Baildon MS 2009. The role of B cells in the pathogenesis of graft-versus-host disease. Blood 114:4919–27
    [Google Scholar]
  200. 200. 
    de Masson A, Bouaziz JD, Le Buanec H, Robin M, O'Meara A et al. 2015. CD24hiCD27+ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood 125:1830–39
    [Google Scholar]
  201. 201. 
    Khoder A, Sarvaria A, Alsuliman A, Chew C, Sekine T et al. 2014. Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood 124:2034–45
    [Google Scholar]
  202. 202. 
    Sarvaria A, Basar R, Mehta RS, Shaim H, Muftuoglu M et al. 2016. IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood 128:1346–61
    [Google Scholar]
  203. 203. 
    Weber M, Stein P, Prufer S, Rudolph B, Kreft A et al. 2014. Donor and host B cell-derived IL-10 contributes to suppression of graft-versus-host disease. Eur. J. Immunol. 44:1857–65
    [Google Scholar]
  204. 204. 
    Hu Y, He GL, Zhao XY, Zhao XS, Wang Y et al. 2017. Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncoimmunology 6:e1284721
    [Google Scholar]
  205. 205. 
    Sato K, Yamashita N, Yamashita N, Baba M, Matsuyama T 2003. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18:367–79
    [Google Scholar]
  206. 206. 
    Fujita S, Sato Y, Sato K, Eizumi K, Fukaya T et al. 2007. Regulatory dendritic cells protect against cutaneous chronic graft-versus-host disease mediated through CD4+CD25+Foxp3+ regulatory T cells. Blood 110:3793–803
    [Google Scholar]
  207. 207. 
    Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y 2019. Dendritic cell regulation of graft-vs.-host disease: immunostimulation and tolerance. Front. Immunol. 10:93
    [Google Scholar]
  208. 208. 
    Teshima T, Reddy P, Lowler KP, KuKuruga MA, Liu C et al. 2002. Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8α+ dendritic cells and reduces experimental acute graft-versus-host disease. Blood 99:1825–32
    [Google Scholar]
  209. 209. 
    Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC 2008. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat. Immunol. 9:1253–60
    [Google Scholar]
  210. 210. 
    Bouchlaka MN, Moffitt AB, Kim J, Kink JA, Bloom DD et al. 2017. Human mesenchymal stem cell-educated macrophages are a distinct high IL-6-producing subset that confer protection in graft-versus-host-disease and radiation injury models. Biol. Blood Marrow Transplant. 23:897–905
    [Google Scholar]
  211. 211. 
    Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P et al. 2011. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J. Immunol. 187:2072–78
    [Google Scholar]
  212. 212. 
    Gabrilovich DI. 2017. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5:3–8
    [Google Scholar]
  213. 213. 
    Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH et al. 2010. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 116:5738–47
    [Google Scholar]
  214. 214. 
    Messmann JJ, Reisser T, Leithauser F, Lutz MB, Debatin KM, Strauss G 2015. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood 126:1138–48
    [Google Scholar]
  215. 215. 
    Vendramin A, Gimondi S, Bermema A, Longoni P, Rizzitano S et al. 2014. Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colony-stimulating factor–mobilized peripheral blood stem cells. Biol. Blood Marrow Transplant. 20:2049–55
    [Google Scholar]
  216. 216. 
    Koehn BH, Apostolova P, Haverkamp JM, Miller JS, McCullar V et al. 2015. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 126:1621–28
    [Google Scholar]
  217. 217. 
    Koehn BH, Saha A, McDonald-Hyman C, Loschi M, Thangavelu G et al. 2019. Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD. Blood 134:1670–82
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-102119-073227
Loading
/content/journals/10.1146/annurev-immunol-102119-073227
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error