Skip to main content
Log in

Electrostriction-induced third-order nonlinear optical susceptibility in metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a theoretical method is presented to calculate third-order nonlinear optical susceptibility resulting from electrostriction (TNSRE) in metamaterials. The presented model is based on homogenization and effective medium theory. We have demonstrated that electrostriction is the dominant mechanism in the enhancement and suppression of the TNSRE. To provide a comprehensive framework that includes different types of metamaterials, we examined all known effective elastic models and effective optical models separately. The numerical results showed that TNSRE has a little dependency on the frequency which decreases at higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Ma, R. Xiao, P. Sheng, Third-order optical nonlinearity enhancement through composite microstructures. J. Opt. Soc. Am. B 15(3), 1022–1029 (1998)

    Article  ADS  Google Scholar 

  2. M. Smith, C. Wolff, C.M. de Sterke, M. Lapine, B. Kuhlmey, C. Poulton, Stimulated Brillouin scattering in metamaterials. J. Opt. Soc. Am. B 33(10), 2162–2171 (2016)

    Article  ADS  Google Scholar 

  3. M. Smith, B. Kuhlmey, C.M. de Sterke, C. Wolff, M. Lapine, C. Poulton, Metamaterial control of stimulated Brillouin scattering. Opt. Lett. 41(10), 2338–2341 (2016)

    Article  ADS  Google Scholar 

  4. M. Kadic, G.W. Milton, M. van Hecke, M. Wegener, 3D metamaterials. Nat. Rev. Phys. 1(3), 198–210 (2019)

    Article  Google Scholar 

  5. D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field averaging. J. Opt. Soc. Am. B 23(3), 391–403 (2006)

    Article  ADS  Google Scholar 

  6. D.R. Smith, J.B. Pendry, M.C. Wiltshire, Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004)

    Article  ADS  Google Scholar 

  7. Y.-R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), p. 575

    Google Scholar 

  8. G. Agarwal, S.D. Gupta, T-matrix approach to the nonlinear susceptibilities of heterogeneous media. Phys. Rev. A 38(11), 5678 (1988)

    Article  ADS  Google Scholar 

  9. G.L. Fischer, R.W. Boyd, Third-Order Nonlinear Optical Properties of Selected Composites (ACS Publications, 1997).

    Book  Google Scholar 

  10. Z.-L. Zeng et al., First-principles study on the structural and electronic properties of double N atoms doped-rutile TiO2. J. At. Mol. Sci 1, 177–184 (2010)

    Google Scholar 

  11. F. Naseri, H. Shahmirzaee, Effect of correlation length between metallic nanoparticles in nonlinear properties of composition of oxide glass and metallic nanoparticles using SPFT. Iran. J. Phys. Res. 13(4), 355–361 (2014)

    Google Scholar 

  12. E.L. Buckland, R.W. Boyd, Electrostrictive contribution to the intensity-dependent refractive index of optical fibers. Opt. Lett. 21(15), 1117–1119 (1996)

    Article  ADS  Google Scholar 

  13. S. Choudhary, R. Boyd, Tutorial on nonlinear optics. Front. Mod. Opt. 190, 31 (2016)

    MATH  Google Scholar 

  14. R.W. Boyd, Nonlinear Optics, 3rd edn. (Elsevier, Netherlands, 2003).

    Google Scholar 

  15. M.M. Braun, L. Pilon, Effective optical properties of non-absorbing nanoporous thin films. Thin Solid Films 496(2), 505–514 (2006)

    Article  ADS  Google Scholar 

  16. K. Birch, M. Downs, An updated Edlén equation for the refractive index of air. Metrologia 30(3), 155 (1993)

    Article  ADS  Google Scholar 

  17. M.J.A. Smith, B.T. Kuhlmey, C.M. de Sterke, C. Wolff, M. Lapine, C.G. Poulton, Electrostriction enhancement in metamaterials. Phys. Rev. B 91(21), 214102 (2015)

    Article  ADS  Google Scholar 

  18. A. C. Wijeyewickrema and S. Leungvichcharoen, A review of analytical methods to determine effective mechanical properties of composites with spherical inclusions, in Proceedings of the Symposium on Environmental Issues Related to Infrastructure Development, Manila, Philippines, pp. 8–9 (2003)

  19. C. Hsiao-Sheng, A. Acrivos, The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids Struct. 14(5), 349–364 (1978)

    Article  Google Scholar 

  20. L. Walpole, The elastic behaviour of a suspension of spherical particles. Q. J. Mech. Appl. Math. 25(2), 153–160 (1972)

    Article  Google Scholar 

  21. A.K. Nandi, S. Datta, Improvement of soft tooling process through particle reinforcement with polyurethane mould. J. Braz. Soc. Mech. Sci. Eng. 33(3), 332–342 (2011)

    Article  Google Scholar 

  22. G. Bourkas, I. Prassianakis, V. Kytopoulos, E. Sideridis, C. Younis, Estimation of elastic moduli of particulate composites by new models and comparison with moduli measured by tension, dynamic, and ultrasonic tests. Adv. Mater. Sci. Eng. 2010, 1 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSAF, China No. U1830123, the National Natural Science Foundation of China (No. 61627802), and the High-Level Educational Innovation Team Introduction Plan of Jiangsu, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Here, we review different analytical methods to obtain the effective elastic properties of metamaterials [18, 21, 22].

  1. (1)

    Paul equation:

    $${E}_{\mathrm{eff}}=\frac{{E}_{\mathrm{m}}^{2}+\left({E}_{\mathrm{m}}{E}_{\mathrm{i}}-{E}_{\mathrm{m}}^{2}\right){f}^{2/3}}{{E}_{\mathrm{m}}+\left({E}_{\mathrm{i}}-{E}_{\mathrm{m}}\right){f}^{2/3}\left(1-{f}^{1/3}\right)}$$

    where \({E}_{\mathrm{eff}}\) is effective the elastic modulus,\({E}_{m}\) is the elastic modulus of the matrix, and \({E}_{\mathrm{i}}\) is the elastic modulus of the inclusion.

  2. (2)

    Wu equation:

    $$\frac{1}{{E}_{\mathrm{eff}}}=\left[\frac{1}{{E}_{\mathrm{m}}}-\frac{{\left(\frac{1}{{E}_{\mathrm{m}}}-\frac{1}{{E}_{\mathrm{i}}}\right)}^{2}}{\lambda \left(\frac{1}{{E}_{\mathrm{m}}}+\frac{\left(1-f\right)}{f{E}_{\mathrm{m}}}\right)}\right](1-f)+\frac{f}{{E}_{\mathrm{i}}}$$

    where \(\lambda\) is a parameter that has been found experimentally near to 1 for \({E}_{m}\ll {E}_{f}\) [22].

  3. (3)

    Voigt equation:

    $${E}_{\mathrm{eff}}=f{E}_{\mathrm{m}}+(1-f){E}_{\mathrm{i}}$$
  4. (4)

    Reuss equation:

    $$\frac{1}{{E}_{\mathrm{eff}}}=\frac{(1-f)}{{E}_{\mathrm{m}}}+\frac{f}{{E}_{\mathrm{i}}}$$
  5. (5)

    Einstein equation:

    $${E}_{\mathrm{eff}}={E}_{\mathrm{m}}\left(1+2.5 f\right)$$
  6. (6)

    Guth and Smallwood Equation:

    $${E}_{\mathrm{eff}}={E}_{\mathrm{m}}\left(1+2.5f+14.1{f}^{2}\right)$$
  7. (7)

    Euler and Van Dyck equation:

    $${E}_{\mathrm{eff}}={E}_{\mathrm{m}}\left(1+\frac{kf}{1-sf}\right)$$

    where \(k\) and \(s\) take the values of 1.25 and 1.20, respectively.

  8. (8)

    Narkis equation:

    $${E}_{\mathrm{eff}}=\frac{{E}_{\mathrm{m}}}{\psi (1-{f}^{1/3})}$$

    where \(1.4\le \psi \le 1.7\)

  9. (9)

    Mooney equation:

    $${E}_{\mathrm{eff}}={E}_{\mathrm{m}}\mathrm{exp}\frac{1+2.5f}{1-5f}$$
  10. (10)

    Counto model:

    $$\frac{1}{{E}_{\mathrm{eff}}}=\frac{1-{f}^{1/2}}{{E}_{\mathrm{m}}}+\frac{1}{\left[\left(1-{f}^{1/2}\right)/{f}^{1/2}\right]{E}_{\mathrm{m}}+{E}_{\mathrm{i}}}$$
  11. (11)

    Takahashi equation:

    $$\frac{{E}_{\mathrm{eff}}}{{E}_{\mathrm{m}}}=1+\left(1-{\nu }_{\mathrm{m}}\right)f\frac{{E}_{i}\left(1-{2\nu }_{\mathrm{m}}\right)-{E}_{\mathrm{m}}\left(1-{\nu }_{\mathrm{i}}\right)+10\left(1+{\nu }_{\mathrm{m}}\right){E}_{\mathrm{i}}\left(1+{\nu }_{\mathrm{m}}\right)-{E}_{\mathrm{m}}(1+{\nu }_{\mathrm{m}})}{{E}_{\mathrm{i}}\left(1+{\nu }_{\mathrm{m}}\right)+{2E}_{\mathrm{m}}\left(1-{2\nu }_{\mathrm{i}}\right)+2{E}_{\mathrm{i}}\left(4-{5\nu }_{\mathrm{m}}\right)\left(1+{\nu }_{\mathrm{m}}\right)+{E}_{\mathrm{m}}(7-5{\nu }_{\mathrm{m}})(1+{\nu }_{\mathrm{i}})}$$

    where \({\nu }_{\mathrm{m}}\) and \({\nu }_{\mathrm{i}}\) are Poisson ratios of the matrix and inclusion, respectively.

  12. (12)

    Kerner equations:

    $$\frac{{E}_{\mathrm{eff}}}{{E}_{\mathrm{m}}}=\frac{\frac{f{\mu }_{i}}{\left(7-{5\nu }_{\mathrm{m}}\right){\mu }_{\mathrm{m}}+(8-{10\nu }_{\mathrm{m}}){\mu }_{\mathrm{i}}}+\frac{f}{15(1-{\nu }_{\mathrm{m}})}}{\frac{f{\mu }_{m}}{\left(7-{5\nu }_{\mathrm{m}}\right){\mu }_{\mathrm{m}}+(8-{10\nu }_{\mathrm{m}}){\mu }_{\mathrm{i}}}+\frac{(1-f)}{15(1-{\nu }_{\mathrm{m}})}}$$
  13. (13)

    Hashin and Shtrikman bounds (upper and lower bounds):

    $${{E}_{\mathrm{eff}}}_{H-S}^{\mathrm{upper}}=\frac{9\left({K}_{m}+\frac{f}{\frac{1}{{K}_{i}-{K}_{m}}+\frac{3(1-f)}{{3K}_{m}+4{\mu }_{\mathrm{m}}}}\right)\left({\mu }_{\mathrm{m}}+\frac{f}{\frac{1}{{\mu }_{\mathrm{i}}-{\mu }_{\mathrm{m}}}+\frac{6({K}_{m}+2{\mu }_{m})(1-f)}{5(3{K}_{m}+4{\mu }_{m}){\mu }_{\mathrm{m}}}}\right)}{3\left({K}_{m}+\frac{f}{\frac{1}{{K}_{i}-{K}_{m}}+\frac{3(1-f)}{{3K}_{m}+4{\mu }_{\mathrm{m}}}}\right)+\left({\mu }_{\mathrm{m}}+\frac{f}{\frac{1}{{\mu }_{\mathrm{i}}-{\mu }_{\mathrm{m}}}+\frac{6({K}_{m}+2{\mu }_{\mathrm{m}})(1-f)}{5(3{K}_{m}+4{\mu }_{\mathrm{m}}){\mu }_{\mathrm{m}}}}\right)}$$
    $${{E}_{\mathrm{eff}}}_{H-S}^{\mathrm{lower}}=\frac{9\left({K}_{i}+\frac{(1-f)}{\frac{1}{{K}_{m}-{K}_{i}}+\frac{3f}{3{K}_{i}+4{\mu }_{\mathrm{i}}}}\right)\left({\mu }_{\mathrm{i}}+\frac{(1-f)}{\frac{1}{{\mu }_{\mathrm{m}}-{\mu }_{\mathrm{i}}}+\frac{6({K}_{i}+2{\mu }_{\mathrm{i}})f}{5(3{K}_{i}+4{\mu }_{\mathrm{i}}){\mu }_{\mathrm{i}}}}\right)}{3\left({K}_{f}+\frac{(1-f)}{\frac{1}{{K}_{m}-{K}_{i}}+\frac{3f}{3{K}_{i}+4{\mu }_{\mathrm{i}}}}\right)+\left({\mu }_{\mathrm{i}}+\frac{(1-f)}{\frac{1}{{\mu }_{\mathrm{m}}-{\mu }_{\mathrm{i}}}+\frac{6({K}_{i}+2{\mu }_{\mathrm{i}})f}{5(3{K}_{i}+4{\mu }_{\mathrm{i}}){\mu }_{\mathrm{i}}}}\right)}$$

It is necessary to mention that Eq. (29) is also exact for a metamaterial consisting of spheres of different sizes embedded in a matrix [19].

Appendix B

In this section, we derived \(\frac{\partial \varepsilon }{\partial \omega }\) and \(\frac{{\partial }^{2}\varepsilon }{\partial \rho \partial \omega }\) for some materials.

For \({\mathrm{SiO}}_{2}\):

$$\frac{\partial \varepsilon }{\partial \omega }=(-\frac{2\lambda {A}_{1}{\left({B}_{1}\right)}^{2}}{{\left({\lambda }^{2}-{\left({B}_{1}\right)}^{2}\right)}^{2}}-\frac{2\lambda {C}_{1}{\left({D}_{1}\right)}^{2}}{{\left({\lambda }^{2}-{\left({D}_{1}\right)}^{2}\right)}^{2}}-\frac{2\lambda {E}_{1}{\left({F}_{1}\right)}^{2}}{{\left({\lambda }^{2}-{\left({F}_{1}\right)}^{2}\right)}^{2}})(-\frac{{\lambda }^{2}}{c})$$
$$\frac{{\partial }^{2}\varepsilon }{\partial \rho \partial \omega }=(\frac{2\left({{P}_{11}}_{1}+{{P}_{12}}_{1}\right)}{3\rho })(\frac{{A}_{1}{\lambda }^{2}}{{\lambda }^{2}-{\left({B}_{1}\right)}^{2}}+\frac{{C}_{1}{\lambda }^{2}}{{\lambda }^{2}-{\left({D}_{1}\right)}^{2}}+\frac{{E}_{1}{\lambda }^{2}}{{\lambda }^{2}-{\left({F}_{1}\right)}^{2}}+1)(-\frac{2\lambda {A}_{1}{\left({B}_{1}\right)}^{2}}{{\left({\lambda }^{2}-{\left({B}_{1}\right)}^{2}\right)}^{2}}-\frac{2\lambda {C}_{1}{\left({D}_{1}\right)}^{2}}{{\left({\lambda }^{2}-{\left({D}_{1}\right)}^{2}\right)}^{2}}-\frac{2\lambda {E}_{1}{\left({F}_{1}\right)}^{2}}{{\left({\lambda }^{2}-{\left({F}_{1}\right)}^{2}\right)}^{2}})(-\frac{{\lambda }^{2}}{c})$$

\({A}_{1}=0.6961663;{B}_{1}=0.0684043;{C}_{1}=0.4079426;{D}_{1}=0.1162414;{E}_{1}=0.8974794;{F}_{1}=9.896161;{{P}_{11}}_{1}=0.12;{{P}_{12}}_{1}=0.27\)

For \({\mathrm{As}}_{2}{\mathrm{S}}_{3}\):

$$\frac{\partial \varepsilon }{\partial \omega }=(-\frac{2{A}_{2}{B}_{2}\lambda }{{\left({\lambda }^{2}-{B}_{2}\right)}^{2}}-\frac{2{C}_{2}{D}_{2}\lambda }{{\left({\lambda }^{2}-{D}_{2}\right)}^{2}}-\frac{2{E}_{2}{F}_{2}\lambda }{{\left({\lambda }^{2}-{F}_{2}\right)}^{2}}-\frac{2{G}_{2}{H}_{2}\lambda }{{\left({\lambda }^{2}-{H}_{2}\right)}^{2}}-\frac{2{K}_{2}{L}_{2}\lambda }{{\left({\lambda }^{2}-{L}_{2}\right)}^{2}})\left(-\frac{{\lambda }^{2}}{c}\right)$$
$$\frac{{\partial }^{2}\varepsilon }{\partial \rho \partial \omega }=(\frac{2\left({{P}_{11}}_{2}+{{P}_{12}}_{2}\right)}{3\rho })(\frac{{A}_{2}{\lambda }^{2}}{{\lambda }^{2}-{B}_{2}}+\frac{{C}_{2}{\lambda }^{2}}{{\lambda }^{2}-{D}_{2}}+\frac{{E}_{2}{\lambda }^{2}}{{\lambda }^{2}-{F}_{2}}+\frac{{G}_{2}{\lambda }^{2}}{{\lambda }^{2}-{H}_{2}}+\frac{{K}_{2}{\lambda }^{2}}{{\lambda }^{2}-{L}_{2}}+1)(-\frac{2{A}_{2}{B}_{2}\lambda }{{\left({\lambda }^{2}-{B}_{2}\right)}^{2}}-\frac{2{C}_{2}{D}_{2}\lambda }{{\left({\lambda }^{2}-{D}_{2}\right)}^{2}}-\frac{2{E}_{2}{F}_{2}\lambda }{{\left({\lambda }^{2}-{F}_{2}\right)}^{2}}-\frac{2{G}_{2}{H}_{2}\lambda }{{\left({\lambda }^{2}-{H}_{2}\right)}^{2}}-\frac{2{K}_{2}{L}_{2}\lambda }{{\left({\lambda }^{2}-{L}_{2}\right)}^{2}})\left(-\frac{{\lambda }^{2}}{c}\right)$$

\({A}_{2}=1.8983678;{B}_{2}=0.0225;{C}_{2}=1.9222979;{D}_{2}=0.0625;{E}_{2}=0.8765134;{F}_{2}=0.1225;{G}_{2}=0.1188704;{H}_{2}=0.2025; {K}_{2}=0.9569903;{L}_{2}=750;{{P}_{11}}_{2}=0.25;{{P}_{12}}_{2}=0.24\)

For \(\mathrm{Si}\):

$$\frac{\partial \varepsilon }{\partial \omega }=2\left({A}_{3}+\frac{{B}_{3} {H}^{2}}{{\lambda }^{2}}+\frac{{C}_{3} {H}^{4}}{{\lambda }^{4}}\right)\left(-\frac{2{B}_{3} {H}^{2}}{{\lambda }^{3}}-\frac{4{C}_{3} {H}^{4}}{{\lambda }^{5}}\right)\left(-\frac{{\lambda }^{2}}{c}\right)$$
$$\frac{{\partial }^{2}\varepsilon }{\partial \rho \partial \omega }=2\left(\frac{2\left({{P}_{11}}_{3}+{{P}_{12}}_{3}\right)}{3\rho }\right){({A}_{3}+\frac{{B}_{3} {H}^{2}}{{\lambda }^{2}}+\frac{{C}_{3} {H}^{4}}{{\lambda }^{4}})}^{2}\left({A}_{3}+\frac{{B}_{3} {H}^{2}}{{\lambda }^{2}}+\frac{{C}_{3} {H}^{4}}{{\lambda }^{4}}\right)\left(-\frac{2{B}_{3} {H}^{2}}{{\lambda }^{3}}-\frac{4{C}_{3} {H}^{4}}{{\lambda }^{5}}\right)\left(-\frac{{\lambda }^{2}}{c}\right)$$

\({A}_{3}= 3.4164 ;{ B}_{3}=0.085818; {C}_{3}=0.010149; H=1.2398419;{{p}_{11}}_{3}=-0.094;{{p}_{12}}_{3}=0.017\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakpour, O., Yang, B., Chao, G. et al. Electrostriction-induced third-order nonlinear optical susceptibility in metamaterials. Appl. Phys. A 127, 376 (2021). https://doi.org/10.1007/s00339-021-04450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04450-8

Keywords

Navigation