Skip to main content

Advertisement

Log in

Fabrication and properties of NaNbO3 sintered by two-step method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferroelectric phase has been discovered in dense sodium niobate NaNbO3 ceramic sintered by two-step method. At ambient temperature, its absolute principal rhombohedral phase R3c rather than antiferroelectric phase Pbcm was detected by X-ray diffraction measurements. And its grains with small size were observed by scanning electron microscope. Its changes of dielectric properties, enhanced ferroelectricity, and weakened piezoelectricity are related and may be ascribed to the dominant ferroelectric phase R3c of small size grains, compared with those of NaNbO3 ceramic sintered by solid-state reaction procedure. The results demonstrate a relationship of phase transitions, domain rotation, and piezoelectric coupling mechanism: indicating the means to achieve stable ferroelectric state of NaNbO3 with small grain size by employing the two-step method, and its potential energy-storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  ADS  Google Scholar 

  2. Y.F. Chang, S.F. Poterala, Z.P. Yang, G.L. Messing, J. Am. Ceram. Soc. 94, 2494 (2011)

    Article  Google Scholar 

  3. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  4. H. Jaffe, D.A. Berlincourt, Proc. IRE 53, 1372 (1965)

    Google Scholar 

  5. E. Ringgaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701 (2005)

    Article  Google Scholar 

  6. N. Ishizawa, J. Wang, T. Sakakura, Y. Inagaki, K.-I. Kakimoto, J. Solid State Chem. 183, 2731 (2010)

    Article  ADS  Google Scholar 

  7. G. Shirane, H. Danner, A. Pavlovic, R. Pepinsky, Phys. Rev. 93, 672 (1954)

    Article  ADS  Google Scholar 

  8. S.K. Mishra, N. Choudhury, S.L. Chaplot, P.S.R. Krishna, R. Mittal, Phys. Rev. B 76, 024110 (2007)

    Article  ADS  Google Scholar 

  9. M.A.L. Nobre, E. Longo, E.R. Leite, J.A. Varela, Mater. Lett. 28, 215 (1996)

    Article  Google Scholar 

  10. L.A. Reznitchenko, A.V. Turik, E.M. Kuznetsova, V.P. Sakhnenko, J. Phys. Condens. Matter 13, 3875 (2001)

    Article  ADS  Google Scholar 

  11. T. Wada, K. Tsuji, T. Saito, Y. Matsuo, Jpn. J. Appl. Phys. 42, 6110 (2003)

    Article  ADS  Google Scholar 

  12. X. Yao, Z. Chen, L.E. Cross, J. Appl. Phys. 54, 3399 (1983)

    Article  ADS  Google Scholar 

  13. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  14. A. Kikuchihara, F. Sakurai, T. Kimura, J. Am. Ceram. Soc. 95, 1556 (2012)

    Article  Google Scholar 

  15. M.H. Cao, W.Q. Wang, F. Li, H. Hao, Z.Y. Yu, H.X. Liu, Ferroelectrics 404, 39 (2010)

    Article  Google Scholar 

  16. M.H. Zhang, H.Q. Fan, L. Chen, C. Yang, J. Alloys Compd. 476, 847 (2009)

    Article  Google Scholar 

  17. S. Bai, T. Karaki, J. Am. Ceram. Soc. 96, 2515 (2013)

    Article  Google Scholar 

  18. I.W. Chen, X.H. Wang, Nature 404, 168 (2000)

    Article  ADS  Google Scholar 

  19. Z.F. Li, C.L. Wang, W.L. Zhong, J.C. Li, M.L. Zhao, J. Appl. Phys. 94, 2548 (2003)

    Article  ADS  Google Scholar 

  20. V.J. Tennery, J. Am. Ceram. Soc. 48, 537 (1965)

    Article  Google Scholar 

  21. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  ADS  Google Scholar 

  22. K. Szot, M. Pawelczyk, J. Herion, C. Freiburg, J. Albers, R. Waser, J. Hulliger, J. Kwapulinski, J. Dec, Appl. Phys. A 62, 335 (1996)

    ADS  Google Scholar 

  23. W.W. Ge, Y. Ren, J.L. Zhang, C.P. Devreugd, J.F. Li, D. Viehland, J. Appl. Phys. 111, 103503 (2012)

    Article  ADS  Google Scholar 

  24. G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S.J. Zhang, T.R. Shrout, Appl. Phys. Lett. 88, 212908 (2006)

    Article  ADS  Google Scholar 

  25. L. Zhao, J.X. Xu, N. Yin, H.C. Wang, C.J. Zhang, J.F. Wang, Phys. Status Solidi-R 2, 111 (2008)

    Article  Google Scholar 

  26. C.M. Wang, J.F. Wang, Appl. Phys. Lett. 89, 202905 (2006)

    Article  ADS  Google Scholar 

  27. M.L. Zhao, L.H. Wang, C.L. Wang, J.L. Zhang, Z.G. Gai, C.M. Wang, J.C. Li, Appl. Phys. Lett. 95, 022904 (2009)

    Article  ADS  Google Scholar 

  28. Z.F. Li, Y.X. Li, J.W. Zhai, Curr. Appl. Phys. 11, S2 (2011)

    ADS  Google Scholar 

  29. T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev, N. Setter, Nat. Commun. 3, 748 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY15A040004, the State Key Development Program for Basic Research of China under 973-Project Grant No. 2009CB613305, the National Natural Science Foundation of China under No. 11074227 and the Research Project of High Level Talents of Shihezi University (no. RCZK202009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfa Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Han, X., Li, Y. et al. Fabrication and properties of NaNbO3 sintered by two-step method. Appl. Phys. A 127, 379 (2021). https://doi.org/10.1007/s00339-021-04514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04514-9

Keywords

Navigation